Optimized Zero False Positives Perceptron Training for Malware Detection

Dragos Gavrilut, Razvan Benchea, Cristina Vatamanu
{"title":"Optimized Zero False Positives Perceptron Training for Malware Detection","authors":"Dragos Gavrilut, Razvan Benchea, Cristina Vatamanu","doi":"10.1109/SYNASC.2012.34","DOIUrl":null,"url":null,"abstract":"The increasing number of malware in the past 4 years has determined researchers to test different machine learning techniques to automate the detection system. But because of the large size of the dataset and the need of having a high detection rate, the resulted models have often produced many false positives. This paper proposes a modified version of the perceptron algorithm able to detect malware samples while training at a low rate (even zero) of false positives. A very low number of false positives is crucial because in a real life situation detecting a clean file as malware can destroy the operating system or render other programs unusable. We also provide a method of optimizing the training speed for the algorithm while maintaining the same accuracy. The resulted algorithm can be used in an ensemble or voting system to increase detection and eliminate false positives.","PeriodicalId":173161,"journal":{"name":"2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The increasing number of malware in the past 4 years has determined researchers to test different machine learning techniques to automate the detection system. But because of the large size of the dataset and the need of having a high detection rate, the resulted models have often produced many false positives. This paper proposes a modified version of the perceptron algorithm able to detect malware samples while training at a low rate (even zero) of false positives. A very low number of false positives is crucial because in a real life situation detecting a clean file as malware can destroy the operating system or render other programs unusable. We also provide a method of optimizing the training speed for the algorithm while maintaining the same accuracy. The resulted algorithm can be used in an ensemble or voting system to increase detection and eliminate false positives.
针对恶意软件检测的优化零误报感知器训练
在过去的4年里,恶意软件的数量不断增加,这使得研究人员决定测试不同的机器学习技术来自动化检测系统。但由于数据集规模大,对检测率的要求高,所得到的模型往往会产生很多误报。本文提出了一种改进的感知器算法,能够在低误报率(甚至为零)的训练中检测恶意软件样本。非常低的误报数量是至关重要的,因为在现实生活中,将干净文件检测为恶意软件可能会破坏操作系统或使其他程序无法使用。我们还提供了一种在保持相同精度的情况下优化算法训练速度的方法。所得到的算法可用于集成或投票系统,以增加检测和消除误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信