Asymptotic convergence of biorthogonal wavelet filters

D. Wei, A. Bovik
{"title":"Asymptotic convergence of biorthogonal wavelet filters","authors":"D. Wei, A. Bovik","doi":"10.1109/ACSSC.1997.679103","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the dual filters associated with biorthogonal spline wavelets (BSWs) and general biorthogonal Coifman wavelets (GBCWs). As the order of wavelet systems approaches infinity the BSW filters either diverge or converge to some non-ideal filters, the GBCW synthesis filters converge to an ideal halfband lowpass (HBLP) filter without exhibiting any Gibbs-like phenomenon, and a subclass of the analysis filters also converge to an ideal HBLP filter but with a one-sided Gibbs-like behavior. The two approximations of the ideal HBLP filter by Daubechies orthonormal wavelet filters and by the GBCW synthesis filters are also compared.","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.679103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of the dual filters associated with biorthogonal spline wavelets (BSWs) and general biorthogonal Coifman wavelets (GBCWs). As the order of wavelet systems approaches infinity the BSW filters either diverge or converge to some non-ideal filters, the GBCW synthesis filters converge to an ideal halfband lowpass (HBLP) filter without exhibiting any Gibbs-like phenomenon, and a subclass of the analysis filters also converge to an ideal HBLP filter but with a one-sided Gibbs-like behavior. The two approximations of the ideal HBLP filter by Daubechies orthonormal wavelet filters and by the GBCW synthesis filters are also compared.
双正交小波滤波器的渐近收敛性
研究了双正交样条小波(BSWs)和一般双正交Coifman小波(GBCWs)相关的对偶滤波器的渐近性质。当小波系统阶数趋近于无穷大时,BSW滤波器发散或收敛到一些非理想滤波器,GBCW合成滤波器收敛到理想半带低通(HBLP)滤波器而不表现出任何吉布斯现象,而分析滤波器的一个子类也收敛到理想HBLP滤波器但具有单边吉布斯行为。比较了Daubechies正交小波滤波器和GBCW合成滤波器对理想HBLP滤波器的两种近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信