Chapter 9: Shape Analysis of Left Ventricle Using Invariant 3-D Spherical Harmonics Shape Descriptors

A. Abdallah, Faouzi Ghorbel, H. Essabbah, M. H. Bedoui
{"title":"Chapter 9: Shape Analysis of Left Ventricle Using Invariant 3-D Spherical Harmonics Shape Descriptors","authors":"A. Abdallah, Faouzi Ghorbel, H. Essabbah, M. H. Bedoui","doi":"10.1109/GMAI.2008.28","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique to generate triangular mesh surface parameterization and characterize 3-D surfaces by invariant spherical harmonic shape descriptors of objects with spherical topology. First, the surface is initially parameterized by defining a continuous one-to-one mapping from the surface of the object to the surface of a unit sphere. Then, the initial parameterization is optimized in a constrained optimization procedure. The obtained parameterized surfaces are expanded into spherical harmonics. The series coefficients are estimated in a least squares sense. Based on harmonic analysis and using results from representation theory, we compute the spherical Fourier transform on the unit sphere S2 with the group of rotations SO(3) as the acting group. The shift theorem allows us to extract invariant 3-D rotation spherical harmonic shape descriptors. The new procedure is illustrated with modelling the left ventricle using the spherical harmonics model and myocardial scintigraphic data. The invariant shape descriptors are used to quantify the heart pathology level.","PeriodicalId":393559,"journal":{"name":"2008 3rd International Conference on Geometric Modeling and Imaging","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Geometric Modeling and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2008.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new technique to generate triangular mesh surface parameterization and characterize 3-D surfaces by invariant spherical harmonic shape descriptors of objects with spherical topology. First, the surface is initially parameterized by defining a continuous one-to-one mapping from the surface of the object to the surface of a unit sphere. Then, the initial parameterization is optimized in a constrained optimization procedure. The obtained parameterized surfaces are expanded into spherical harmonics. The series coefficients are estimated in a least squares sense. Based on harmonic analysis and using results from representation theory, we compute the spherical Fourier transform on the unit sphere S2 with the group of rotations SO(3) as the acting group. The shift theorem allows us to extract invariant 3-D rotation spherical harmonic shape descriptors. The new procedure is illustrated with modelling the left ventricle using the spherical harmonics model and myocardial scintigraphic data. The invariant shape descriptors are used to quantify the heart pathology level.
第九章:用不变三维球面谐波形状描述子分析左心室形状
提出了一种利用球面拓扑对象的不变球谐形描述子生成三角形网格曲面参数化并表征三维曲面的新技术。首先,通过定义从物体表面到单位球体表面的连续一对一映射来初始化表面。然后,采用约束优化方法对初始参数化进行优化。将得到的参数化曲面展开为球面谐波。用最小二乘方法估计序列系数。在谐波分析的基础上,利用表征理论的结果,以旋转群SO(3)为作用群,计算了单位球S2上的球面傅里叶变换。平移定理允许我们提取不变的三维旋转球谐形描述子。用球面谐波模型和心肌显像数据对左心室进行建模,说明了新方法。不变形状描述符用于量化心脏病理水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信