Mathematical Fundamentals of a Diagnostic Method by Long Nonlinear Waves for the Structured Media

V. O. Vakhnenko, D. Vengrovich, A. Michtchenko
{"title":"Mathematical Fundamentals of a Diagnostic Method by Long Nonlinear Waves for the Structured Media","authors":"V. O. Vakhnenko, D. Vengrovich, A. Michtchenko","doi":"10.5772/INTECHOPEN.91462","DOIUrl":null,"url":null,"abstract":"We have proven that the long wave with finite amplitude responds to the structure of the medium. The heterogeneity in a medium structure always introduces additional nonlinearity in comparison with the homogeneous medium. At the same time, a question appears on the inverse problem, namely, is there sufficient information in the wave field to reconstruct the structure of the medium? It turns out that the knowledge on the evolution of nonlinear waves enables us to form the theoretical fundamentals of the diagnostic method to define the characteristics of a heterogeneous medium using the long waves of finite amplitudes (inverse problem). The mass contents of the particular components can be denoted with specified accuracy by this diagnostic method.","PeriodicalId":320188,"journal":{"name":"Advances in Complex Analysis and Applications","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.91462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have proven that the long wave with finite amplitude responds to the structure of the medium. The heterogeneity in a medium structure always introduces additional nonlinearity in comparison with the homogeneous medium. At the same time, a question appears on the inverse problem, namely, is there sufficient information in the wave field to reconstruct the structure of the medium? It turns out that the knowledge on the evolution of nonlinear waves enables us to form the theoretical fundamentals of the diagnostic method to define the characteristics of a heterogeneous medium using the long waves of finite amplitudes (inverse problem). The mass contents of the particular components can be denoted with specified accuracy by this diagnostic method.
结构介质长非线性波诊断方法的数学基础
我们已经证明了有限振幅长波对介质结构的响应。与均匀介质相比,介质结构的非均匀性总是会引入额外的非线性。与此同时,反问题也出现了一个问题,即波场中是否有足够的信息来重构介质的结构?事实证明,关于非线性波演化的知识使我们能够形成利用有限振幅长波来定义非均质介质特性的诊断方法的理论基础(反问题)。用这种诊断方法可以准确地表示出特定组分的质量含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信