Juliane Skibbe, E. Aitier, Stefan Barthelmes, Markus Bihler, Gabriel Brusq, F. Hacker, Hans-Juergen Sedlmayr
{"title":"Fault Detection, Isolation and Recovery in the MMX Rover Locomotion Subsystem","authors":"Juliane Skibbe, E. Aitier, Stefan Barthelmes, Markus Bihler, Gabriel Brusq, F. Hacker, Hans-Juergen Sedlmayr","doi":"10.1109/AERO55745.2023.10115791","DOIUrl":null,"url":null,"abstract":"In any mechatronic system, faults can occur. Likewise also in the MMX rover, which is a wheeled rover mutually developed by CNES (Centre national d'études spatiales) and DLR (German Aerospace Center), intended to land on Phobos. An essential part of the MMX rover is the locomotion subsystem which includes several sensors and eight motors actuating the four legs and the four wheels. In each of these components and their interfaces, there is a possibility that faults arise and lead to subsystem failures, which would mean that the rover cannot move anymore. To reduce this risk, the possible faults of the MMX locomotion subsystem were identified in a FMECA study and their criticality was classified, which is presented in here. During this examination, the criticality was graded depending on different mission phases. With the help of this study, the hardware, firmware and software design were enhanced. Further, certain fault detection, isolation and recovery strategies were implemented in the locomotion firmware and software as well as in the full rover software.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In any mechatronic system, faults can occur. Likewise also in the MMX rover, which is a wheeled rover mutually developed by CNES (Centre national d'études spatiales) and DLR (German Aerospace Center), intended to land on Phobos. An essential part of the MMX rover is the locomotion subsystem which includes several sensors and eight motors actuating the four legs and the four wheels. In each of these components and their interfaces, there is a possibility that faults arise and lead to subsystem failures, which would mean that the rover cannot move anymore. To reduce this risk, the possible faults of the MMX locomotion subsystem were identified in a FMECA study and their criticality was classified, which is presented in here. During this examination, the criticality was graded depending on different mission phases. With the help of this study, the hardware, firmware and software design were enhanced. Further, certain fault detection, isolation and recovery strategies were implemented in the locomotion firmware and software as well as in the full rover software.