3D printed pyramidal horn antenna for K band frequency applications

Luis A. Cuevas, G. Serandour, Rafael Rodríguez, Daniel Lühr, R. Reeves
{"title":"3D printed pyramidal horn antenna for K band frequency applications","authors":"Luis A. Cuevas, G. Serandour, Rafael Rodríguez, Daniel Lühr, R. Reeves","doi":"10.1117/12.2563079","DOIUrl":null,"url":null,"abstract":"The technology of 3D printing using a polymeric substrate and the fused deposition modeling (FDM) method, as a flexible method of creating a variety of parts, has the possibility of leading solutions in various fields of technology. The control of the surface quality achieved by its deposition on polished surfaces, such as glass, allows to bring the terminations of the exposed faces to values below 0.8 μm (N6). These qualities, obtained by printing on glass, in conjunction with the adaptation of the print head, allow for the manufacturing of flat concave or convex surfaces with excellent surface finish. Additionally, the electroless process described by Merino (2010) on NFC, which has been adapted for a PLA polymeric substrate, has permitted the deposition of a layer of copper (Cu) on the substrate, creating a surface conducting for an electromagnetic signal. Combining these two methods it is possible to manufacture a horn type antenna (horn) such as shown in figure 1, which complies with the necessary geometry to be used for the reception of electromagnetic signals. The antenna will be used in radio astronomy for the frequency band between 10 GHz and 30 GHz, and will be put to the test, comparing its performance against a series antenna.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2563079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The technology of 3D printing using a polymeric substrate and the fused deposition modeling (FDM) method, as a flexible method of creating a variety of parts, has the possibility of leading solutions in various fields of technology. The control of the surface quality achieved by its deposition on polished surfaces, such as glass, allows to bring the terminations of the exposed faces to values below 0.8 μm (N6). These qualities, obtained by printing on glass, in conjunction with the adaptation of the print head, allow for the manufacturing of flat concave or convex surfaces with excellent surface finish. Additionally, the electroless process described by Merino (2010) on NFC, which has been adapted for a PLA polymeric substrate, has permitted the deposition of a layer of copper (Cu) on the substrate, creating a surface conducting for an electromagnetic signal. Combining these two methods it is possible to manufacture a horn type antenna (horn) such as shown in figure 1, which complies with the necessary geometry to be used for the reception of electromagnetic signals. The antenna will be used in radio astronomy for the frequency band between 10 GHz and 30 GHz, and will be put to the test, comparing its performance against a series antenna.
用于K波段频率应用的3D打印锥体喇叭天线
使用聚合物基材和熔融沉积建模(FDM)方法的3D打印技术,作为一种创建各种零件的灵活方法,有可能在各个技术领域成为领先的解决方案。通过将其沉积在抛光表面(如玻璃)上实现对表面质量的控制,可以将暴露面的终端值控制在0.8 μm (N6)以下。通过在玻璃上印刷而获得的这些品质,加上打印头的适应性,可以制造具有优异表面光洁度的平面凹或凸表面。此外,美利诺(2010)在NFC上描述的化学工艺已适用于PLA聚合物衬底,允许在衬底上沉积一层铜(Cu),从而形成导电电磁信号的表面。结合这两种方法,可以制造如图1所示的喇叭型天线(喇叭),它符合用于接收电磁信号的必要几何形状。该天线将用于射电天文学,频率在10 GHz到30 GHz之间,并将进行测试,将其性能与串联天线进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信