{"title":"A Novel Class-wise Forgetting Detector in Continual Learning","authors":"Xuan Cuong Pham, Alan Wee-Chung Liew, Can Wang","doi":"10.1109/DICTA52665.2021.9647137","DOIUrl":null,"url":null,"abstract":"Deep learning model suffers from catastrophic forgetting when learning continuously from stream data. Existing strategies for continual learning suppose the forgetting always happens when learning a new task and only deals with the previous task's global forgetting. This study introduces a novel active forgetting detector based on a windowing technique that monitors the model's forgetting rate for each encountered class label. When the model experiences the forgetting issue, we adapt the forgetting classes by using a proposed replay from experience method called online triplet rehearsal. We conduct comprehensive experiments on four vision datasets to demonstrate that the proposed approach performs significantly better than three state-of-the-art continual learning methods.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning model suffers from catastrophic forgetting when learning continuously from stream data. Existing strategies for continual learning suppose the forgetting always happens when learning a new task and only deals with the previous task's global forgetting. This study introduces a novel active forgetting detector based on a windowing technique that monitors the model's forgetting rate for each encountered class label. When the model experiences the forgetting issue, we adapt the forgetting classes by using a proposed replay from experience method called online triplet rehearsal. We conduct comprehensive experiments on four vision datasets to demonstrate that the proposed approach performs significantly better than three state-of-the-art continual learning methods.