Entity-Aware Graph Convolution Networks for Event Detection

Congcong Zhang, Gaofei Xie, Ning Liu, Xiaojin Hu, Yatian Shen, Xiajiong Shen
{"title":"Entity-Aware Graph Convolution Networks for Event Detection","authors":"Congcong Zhang, Gaofei Xie, Ning Liu, Xiaojin Hu, Yatian Shen, Xiajiong Shen","doi":"10.1109/ICSAI53574.2021.9664062","DOIUrl":null,"url":null,"abstract":"The existing event detection models based on graph convolutional networks only consider the syntactic structure from the dependency tree of the sentence, and ignore the importance of the entity to the event in the syntactic structure, which is used for event detection task. In this paper, we propose a Entity-Aware Convolutional Networks (EAGCN) which exploits adding entity information directly to the syntactic structure by dynamically modifying the dependency graph of the sentence in the convolution operation. Besides, we followed EAGCN with a Bi-directional Long-Short Term Memory to import sequence information into structure information, which is an indispensable part of the model. The sufficient experimental results show that our model achieves the best F1 score for the event detection task on the ACE 2005 dataset.","PeriodicalId":131284,"journal":{"name":"2021 7th International Conference on Systems and Informatics (ICSAI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI53574.2021.9664062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing event detection models based on graph convolutional networks only consider the syntactic structure from the dependency tree of the sentence, and ignore the importance of the entity to the event in the syntactic structure, which is used for event detection task. In this paper, we propose a Entity-Aware Convolutional Networks (EAGCN) which exploits adding entity information directly to the syntactic structure by dynamically modifying the dependency graph of the sentence in the convolution operation. Besides, we followed EAGCN with a Bi-directional Long-Short Term Memory to import sequence information into structure information, which is an indispensable part of the model. The sufficient experimental results show that our model achieves the best F1 score for the event detection task on the ACE 2005 dataset.
事件检测的实体感知图卷积网络
现有的基于图卷积网络的事件检测模型仅从句子的依赖树出发考虑句法结构,而忽略了句法结构中实体对事件的重要性,用于事件检测任务。本文提出了一种实体感知卷积网络(EAGCN),该网络通过在卷积运算中动态修改句子的依赖图,将实体信息直接添加到句法结构中。此外,我们采用双向长短期记忆的EAGCN,将序列信息导入到结构信息中,这是模型不可缺少的一部分。充分的实验结果表明,我们的模型在ACE 2005数据集上获得了事件检测任务的最佳F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信