Improving classification accuracy by identifying and removing instances that should be misclassified

Michael R. Smith, T. Martinez
{"title":"Improving classification accuracy by identifying and removing instances that should be misclassified","authors":"Michael R. Smith, T. Martinez","doi":"10.1109/IJCNN.2011.6033571","DOIUrl":null,"url":null,"abstract":"Appropriately handling noise and outliers is an important issue in data mining. In this paper we examine how noise and outliers are handled by learning algorithms. We introduce a filtering method called PRISM that identifies and removes instances that should be misclassified. We refer to the set of removed instances as ISMs (instances that should be misclassified). We examine PRISM and compare it against 3 existing outlier detection methods and 1 noise reduction technique on 48 data sets using 9 learning algorithms. Using PRISM, the classification accuracy increases from 78.5% to 79.8% on a set of 53 data sets and is statistically significant. In addition, the accuracy on the non-outlier instances increases from 82.8% to 84.7%. PRISM achieves a higher classification accuracy than the outlier detection methods and compares favorably with the noise reduction method.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

Appropriately handling noise and outliers is an important issue in data mining. In this paper we examine how noise and outliers are handled by learning algorithms. We introduce a filtering method called PRISM that identifies and removes instances that should be misclassified. We refer to the set of removed instances as ISMs (instances that should be misclassified). We examine PRISM and compare it against 3 existing outlier detection methods and 1 noise reduction technique on 48 data sets using 9 learning algorithms. Using PRISM, the classification accuracy increases from 78.5% to 79.8% on a set of 53 data sets and is statistically significant. In addition, the accuracy on the non-outlier instances increases from 82.8% to 84.7%. PRISM achieves a higher classification accuracy than the outlier detection methods and compares favorably with the noise reduction method.
通过识别和删除应该被错误分类的实例来提高分类准确性
适当处理噪声和异常值是数据挖掘中的一个重要问题。在本文中,我们研究了如何通过学习算法处理噪声和异常值。我们引入了一种名为PRISM的过滤方法,用于识别和删除应该被错误分类的实例。我们将删除的实例集称为ISMs(应该被错误分类的实例)。我们对PRISM进行了研究,并将其与现有的3种离群检测方法和1种降噪技术在48个数据集上使用9种学习算法进行了比较。使用PRISM,在53个数据集上,分类准确率从78.5%提高到79.8%,具有统计学意义。此外,非离群实例的准确率从82.8%提高到84.7%。PRISM的分类精度高于离群点检测方法,优于降噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信