Subexponential Algorithms for Unique Games and Related Problems

Sanjeev Arora, B. Barak, David Steurer
{"title":"Subexponential Algorithms for Unique Games and Related Problems","authors":"Sanjeev Arora, B. Barak, David Steurer","doi":"10.1145/2775105","DOIUrl":null,"url":null,"abstract":"We give a sub exponential time approximation algorithm for the \\textsc{Unique Games} problem. The algorithms run in time that is exponential in an arbitrarily small polynomial of the input size, $n^{\\epsilon}$. The approximation guarantee depends on~$\\epsilon$, but not on the alphabet size or the number of variables. We also obtain a sub exponential algorithms with improved approximations for \\textsc{Small-Set Expansion} and \\textsc{Multicut}. For \\textsc{Max Cut}, \\textsc{Sparsest Cut}, and \\textsc{Vertex Cover}, we give sub exponential algorithms with improved approximations on some interesting subclasses of instances. Khot's Unique Games Conjecture (UGC) states that it is NP-hard to achieve approximation guarantees such as ours for the \\textsc{Unique Games}. While our results stop short of refuting the UGC, they do suggest that \\textsc{Unique Games} is significantly easier than NP-hard problems such as \\textsc{Max 3Sat}, \\textsc{Max 3Lin}, \\textsc{Label Cover} and more, that are believed not to have a sub exponential algorithm achieving a non-trivial approximation ratio. The main component in our algorithms is a new result on graph decomposition that may have other applications. Namely we show that for every $\\epsilon>0$ and every regular $n$-vertex graph~$G$, by changing at most $\\epsilon$ fraction of $G$'s edges, one can break~$G$ into disjoint parts so that the stochastic adjacency matrix of the induced graph on each part has at most $ n^{\\epsilon}$ eigenvalues larger than $1-\\eta$, where $\\eta$ depends polynomially on $\\epsilon$.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"263","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2775105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 263

Abstract

We give a sub exponential time approximation algorithm for the \textsc{Unique Games} problem. The algorithms run in time that is exponential in an arbitrarily small polynomial of the input size, $n^{\epsilon}$. The approximation guarantee depends on~$\epsilon$, but not on the alphabet size or the number of variables. We also obtain a sub exponential algorithms with improved approximations for \textsc{Small-Set Expansion} and \textsc{Multicut}. For \textsc{Max Cut}, \textsc{Sparsest Cut}, and \textsc{Vertex Cover}, we give sub exponential algorithms with improved approximations on some interesting subclasses of instances. Khot's Unique Games Conjecture (UGC) states that it is NP-hard to achieve approximation guarantees such as ours for the \textsc{Unique Games}. While our results stop short of refuting the UGC, they do suggest that \textsc{Unique Games} is significantly easier than NP-hard problems such as \textsc{Max 3Sat}, \textsc{Max 3Lin}, \textsc{Label Cover} and more, that are believed not to have a sub exponential algorithm achieving a non-trivial approximation ratio. The main component in our algorithms is a new result on graph decomposition that may have other applications. Namely we show that for every $\epsilon>0$ and every regular $n$-vertex graph~$G$, by changing at most $\epsilon$ fraction of $G$'s edges, one can break~$G$ into disjoint parts so that the stochastic adjacency matrix of the induced graph on each part has at most $ n^{\epsilon}$ eigenvalues larger than $1-\eta$, where $\eta$ depends polynomially on $\epsilon$.
唯一对策及相关问题的次指数算法
我们给出了\textsc{独特的游戏}问题的次指数时间逼近算法。算法运行的时间是一个任意小的输入大小的多项式的指数,$n^{\epsilon}$。近似保证取决于$\epsilon$,但不取决于字母大小或变量数量。我们还得到了一种改进近似的次指数算法\textsc{小集扩展}和\textsc{多切口}。对于\textsc{Max Cut}、\textsc{最稀疏的切口}和\textsc{顶点覆盖},我们给出了对一些有趣的实例子类进行改进近似的次指数算法。Khot的Unique Games Conjecture (UGC)指出,实现近似保证(如\textsc{独特的游戏})是np困难的。虽然我们的结果没有反驳UGC,但它们确实表明\textsc{独特的游戏}比NP-hard问题(如\textsc{最大3Sat}, \textsc{最大3Lin}, \textsc{标签封面}等)容易得多,这些问题被认为没有实现非平凡近似比的次指数算法。我们算法的主要组成部分是图分解的新结果,可能有其他应用。即对于每一个$\epsilon>0$和每一个规则的$n$顶点图$G$,通过改变$G$的边的至多$\epsilon$分数,可以将$G$分割成不相交的部分,使得每个部分上的诱导图的随机邻接矩阵的特征值至多$ n^{\epsilon}$大于$1-\eta$,其中$\eta$多项式地依赖于$\epsilon$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信