Dialog history management for end-to-end task-oriented dialog systems

Shijia Nie, Guanjun Li, Xuesong Zhang, Dawei Zhang, Jianhua Tao, Zhao Lv
{"title":"Dialog history management for end-to-end task-oriented dialog systems","authors":"Shijia Nie, Guanjun Li, Xuesong Zhang, Dawei Zhang, Jianhua Tao, Zhao Lv","doi":"10.1117/12.2667733","DOIUrl":null,"url":null,"abstract":"End-to-end task-oriented dialogue systems rely heavily on an understanding of the dialog history. This often faces the challenge of inferring which dialog history information is critical to generating responses. In this paper, we address this challenge by leveraging a dialog history manager component that dynamically focuses on dialog history memory. It performs multiple add and forget operations by fusing an enhanced entity representation of dialog history and Knowledge Base (KB) information as queries, remembering entities relevant to responses and filtering out unimportant information. Experimental results on an open task-oriented dialogue dataset show that our model outperforms the baseline system in terms of effectiveness and produces contextually consistent responses.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

End-to-end task-oriented dialogue systems rely heavily on an understanding of the dialog history. This often faces the challenge of inferring which dialog history information is critical to generating responses. In this paper, we address this challenge by leveraging a dialog history manager component that dynamically focuses on dialog history memory. It performs multiple add and forget operations by fusing an enhanced entity representation of dialog history and Knowledge Base (KB) information as queries, remembering entities relevant to responses and filtering out unimportant information. Experimental results on an open task-oriented dialogue dataset show that our model outperforms the baseline system in terms of effectiveness and produces contextually consistent responses.
面向端到端任务的对话系统的对话历史管理
端到端面向任务的对话系统严重依赖于对对话历史的理解。这通常面临着推断哪些对话历史信息对生成响应至关重要的挑战。在本文中,我们通过利用一个动态关注对话历史内存的对话历史管理器组件来解决这个挑战。它通过融合对话历史和知识库(KB)信息的增强实体表示作为查询,记住与响应相关的实体并过滤掉不重要的信息,从而执行多个添加和忘记操作。在一个开放的面向任务的对话数据集上的实验结果表明,我们的模型在有效性方面优于基线系统,并产生上下文一致的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信