SSN_NLP at SemEval-2020 Task 7: Detecting Funniness Level Using Traditional Learning with Sentence Embeddings

K. S., T. D., Aravindan Chandrabose
{"title":"SSN_NLP at SemEval-2020 Task 7: Detecting Funniness Level Using Traditional Learning with Sentence Embeddings","authors":"K. S., T. D., Aravindan Chandrabose","doi":"10.18653/v1/2020.semeval-1.109","DOIUrl":null,"url":null,"abstract":"Assessing the funniness of edited news headlines task deals with estimating the humorness in the headlines edited with micro-edits. This task has two sub-tasks in which one has to calculate the mean predicted score of humor level and other deals with predicting the best funnier sentence among given two sentences. We have calculated the humorness level using microtc and predicted the funnier sentence using microtc, universal sentence encoder classifier, many other traditional classifiers that use the vectors formed with universal sentence encoder embeddings, sentence embeddings and majority algorithm within these approaches. Among these approaches, microtc with 6 folds, 24 processes and 3 folds, 36 processes achieve the least Root Mean Square Error for development and test set respectively for subtask 1. For subtask 2, Universal sentence encoder classifier achieves the highest accuracy for development set and Multi-Layer Perceptron applied on vectors vectorized using universal sentence encoder embeddings for the test set.","PeriodicalId":207482,"journal":{"name":"Proceedings of the Fourteenth Workshop on Semantic Evaluation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourteenth Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.semeval-1.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Assessing the funniness of edited news headlines task deals with estimating the humorness in the headlines edited with micro-edits. This task has two sub-tasks in which one has to calculate the mean predicted score of humor level and other deals with predicting the best funnier sentence among given two sentences. We have calculated the humorness level using microtc and predicted the funnier sentence using microtc, universal sentence encoder classifier, many other traditional classifiers that use the vectors formed with universal sentence encoder embeddings, sentence embeddings and majority algorithm within these approaches. Among these approaches, microtc with 6 folds, 24 processes and 3 folds, 36 processes achieve the least Root Mean Square Error for development and test set respectively for subtask 1. For subtask 2, Universal sentence encoder classifier achieves the highest accuracy for development set and Multi-Layer Perceptron applied on vectors vectorized using universal sentence encoder embeddings for the test set.
SemEval-2020任务7的SSN_NLP:基于句子嵌入的传统学习检测搞笑程度
新闻标题的幽默性评价任务是对微编辑新闻标题的幽默性进行评价。该任务有两个子任务,其中一个是计算幽默水平的平均预测分数,另一个是预测给定两个句子中最有趣的句子。我们使用微tc计算幽默水平,并使用微tc、通用句子编码器分类器、许多其他传统分类器来预测更有趣的句子,这些分类器使用由通用句子编码器嵌入、句子嵌入和这些方法中的多数算法形成的向量。其中,对于子任务1的开发集和测试集,6次、24次和3次、36次的microtc方法的均方根误差最小。对于子任务2,通用句子编码器分类器在开发集和多层感知器上实现了最高的准确率,在测试集上使用通用句子编码器嵌入对向量进行了矢量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信