SIMULASI PENANGANAN PENCILAN PADA ANALISIS REGRESI MENGGUNAKAN METODE LEAST MEDIAN SQUARE (LMS)

Tusilowati Tusilowati, L. Handayani, Rais Rais
{"title":"SIMULASI PENANGANAN PENCILAN PADA ANALISIS REGRESI MENGGUNAKAN METODE LEAST MEDIAN SQUARE (LMS)","authors":"Tusilowati Tusilowati, L. Handayani, Rais Rais","doi":"10.22487/2540766X.2018.V15.I2.11362","DOIUrl":null,"url":null,"abstract":"The simulation of handling of outliers on regression analysis used the method which was commonly used to predict the parameter in regression analysis, namely Least Median Square (LMS) due to the simple calculation it had. The data with outliers would result in unbiased parameter estimate. Hence, it was necessary to draw up the robust regression to overcome the outliers. The data used were simulation data of the number of data pairs ( X,Y) by 25 and 100 respectively. The result of the simulation was divided into 5 subsets of data cluster of parameter regression prediction by Ordinary Least Square (OLS) and Least Median Square (LMS) methods. The prediction result of the parameter of each method on each subset of data cluster was tested with both method to discover the which better one. Based on the research findings, it was found that The Least Median Square (LMS) method was known better than Ordinary Least Square (OLS) method in predicting the regression parameter on the data which had up to 3% of the percentage of the outlier.","PeriodicalId":259622,"journal":{"name":"JURNAL ILMIAH MATEMATIKA DAN TERAPAN","volume":"11 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL ILMIAH MATEMATIKA DAN TERAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22487/2540766X.2018.V15.I2.11362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of handling of outliers on regression analysis used the method which was commonly used to predict the parameter in regression analysis, namely Least Median Square (LMS) due to the simple calculation it had. The data with outliers would result in unbiased parameter estimate. Hence, it was necessary to draw up the robust regression to overcome the outliers. The data used were simulation data of the number of data pairs ( X,Y) by 25 and 100 respectively. The result of the simulation was divided into 5 subsets of data cluster of parameter regression prediction by Ordinary Least Square (OLS) and Least Median Square (LMS) methods. The prediction result of the parameter of each method on each subset of data cluster was tested with both method to discover the which better one. Based on the research findings, it was found that The Least Median Square (LMS) method was known better than Ordinary Least Square (OLS) method in predicting the regression parameter on the data which had up to 3% of the percentage of the outlier.
仿制对回归分析的对接处理方法采用最不平等的方法(LMS)
在回归分析异常值处理的模拟中,由于计算简单,采用了回归分析中常用的参数预测方法,即最小中值二乘(LMS)。具有异常值的数据将导致无偏参数估计。因此,有必要制定稳健回归来克服异常值。所使用的数据分别为数据对(X,Y)个数乘以25和100的模拟数据。采用普通最小二乘法(OLS)和最小中值二乘法(LMS)将模拟结果划分为参数回归预测的5个数据簇子集。用两种方法对每一种方法在每个数据簇子集上的参数预测结果进行测试,以发现哪一种方法更好。根据研究结果,最小中值二乘(LMS)方法比普通最小二乘(OLS)方法在离群值百分比高达3%的数据上预测回归参数的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信