Enabling Fast, Noncontiguous GPU Data Movement in Hybrid MPI+GPU Environments

John Jenkins, James Dinan, P. Balaji, N. Samatova, R. Thakur
{"title":"Enabling Fast, Noncontiguous GPU Data Movement in Hybrid MPI+GPU Environments","authors":"John Jenkins, James Dinan, P. Balaji, N. Samatova, R. Thakur","doi":"10.1109/CLUSTER.2012.72","DOIUrl":null,"url":null,"abstract":"Lack of efficient and transparent interaction with GPU data in hybrid MPI+GPU environments challenges GPU acceleration of large-scale scientific computations. A particular challenge is the transfer of noncontiguous data to and from GPU memory. MPI implementations currently do not provide an efficient means of utilizing data types for noncontiguous communication of data in GPU memory. To address this gap, we present an MPI data type-processing system capable of efficiently processing arbitrary data types directly on the GPU. We present a means for converting conventional data type representations into a GPU-amenable format. Fine-grained, element-level parallelism is then utilized by a GPU kernel to perform in-device packing and unpacking of noncontiguous elements. We demonstrate a several-fold performance improvement for noncontiguous column vectors, 3D array slices, and 4D array sub volumes over CUDA-based alternatives. Compared with optimized, layout-specific implementations, our approach incurs low overhead, while enabling the packing of data types that do not have a direct CUDA equivalent. These improvements are demonstrated to translate to significant improvements in end-to-end, GPU-to-GPU communication time. In addition, we identify and evaluate communication patterns that may cause resource contention with packing operations, providing a baseline for adaptively selecting data-processing strategies.","PeriodicalId":143579,"journal":{"name":"2012 IEEE International Conference on Cluster Computing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2012.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Lack of efficient and transparent interaction with GPU data in hybrid MPI+GPU environments challenges GPU acceleration of large-scale scientific computations. A particular challenge is the transfer of noncontiguous data to and from GPU memory. MPI implementations currently do not provide an efficient means of utilizing data types for noncontiguous communication of data in GPU memory. To address this gap, we present an MPI data type-processing system capable of efficiently processing arbitrary data types directly on the GPU. We present a means for converting conventional data type representations into a GPU-amenable format. Fine-grained, element-level parallelism is then utilized by a GPU kernel to perform in-device packing and unpacking of noncontiguous elements. We demonstrate a several-fold performance improvement for noncontiguous column vectors, 3D array slices, and 4D array sub volumes over CUDA-based alternatives. Compared with optimized, layout-specific implementations, our approach incurs low overhead, while enabling the packing of data types that do not have a direct CUDA equivalent. These improvements are demonstrated to translate to significant improvements in end-to-end, GPU-to-GPU communication time. In addition, we identify and evaluate communication patterns that may cause resource contention with packing operations, providing a baseline for adaptively selecting data-processing strategies.
在混合MPI+GPU环境中实现快速,不连续的GPU数据移动
在MPI+GPU混合环境中,缺乏与GPU数据高效透明的交互,对大规模科学计算的GPU加速提出了挑战。一个特别的挑战是将不连续的数据从GPU内存传输到GPU内存。MPI实现目前没有提供一种有效的方法来利用数据类型在GPU内存中进行不连续的数据通信。为了解决这一差距,我们提出了一个MPI数据类型处理系统,能够直接在GPU上有效地处理任意数据类型。我们提出了一种将传统数据类型表示转换为gpu兼容格式的方法。然后,GPU内核利用细粒度的元素级并行性来执行设备内不连续元素的打包和解包。我们展示了非连续列向量、3D阵列切片和4D阵列子卷的性能比基于cuda的替代方案提高了几倍。与优化的,特定于布局的实现相比,我们的方法导致低开销,同时允许没有直接CUDA等效的数据类型的打包。这些改进被证明转化为端到端,gpu到gpu通信时间的显着改进。此外,我们还识别和评估可能导致打包操作资源争用的通信模式,为自适应地选择数据处理策略提供基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信