Asymptotic normality of prediction error estimators for approximate system models

L. Ljung, P. Caines
{"title":"Asymptotic normality of prediction error estimators for approximate system models","authors":"L. Ljung, P. Caines","doi":"10.1080/17442507908833135","DOIUrl":null,"url":null,"abstract":"A general class of parameter estimation methods for stochastic dynamical systems is studied. The class contains the least squares method, output-error methods, the maximum likelihood method and several other techniques. It is shown that the class of estimates so obtained are asymptotically normal and expressions for the resulting asymptotic covariance matrices are given. The regularity conditions that are imposed to obtain these results are fairly weak. It is, for example, not assumed that the true system can be described within the chosen model set, and, as a consequence, the results in this paper form a part of the so-called approximate modeling approach to system identification. It is also noteworthy that arbitrary feedback from observed system outputs to observed system inputs is allowed and that stationarity is not required.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"198","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442507908833135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 198

Abstract

A general class of parameter estimation methods for stochastic dynamical systems is studied. The class contains the least squares method, output-error methods, the maximum likelihood method and several other techniques. It is shown that the class of estimates so obtained are asymptotically normal and expressions for the resulting asymptotic covariance matrices are given. The regularity conditions that are imposed to obtain these results are fairly weak. It is, for example, not assumed that the true system can be described within the chosen model set, and, as a consequence, the results in this paper form a part of the so-called approximate modeling approach to system identification. It is also noteworthy that arbitrary feedback from observed system outputs to observed system inputs is allowed and that stationarity is not required.
近似系统模型预测误差估计量的渐近正态性
研究了一类一般的随机动力系统参数估计方法。该类包含最小二乘法、输出误差法、最大似然法和其他一些技术。证明了所得到的一类估计是渐近正态的,并给出了渐近协方差矩阵的表达式。为获得这些结果而施加的规则性条件相当弱。例如,没有假设真实的系统可以在选择的模型集中描述,因此,本文的结果构成了所谓的系统识别近似建模方法的一部分。同样值得注意的是,从观察到的系统输出到观察到的系统输入的任意反馈是允许的,并且不需要平稳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信