Speech-to-lip movement synthesis maximizing audio-visual joint probability based on EM algorithm

Satoshi Nakamura, E. Yamamoto, K. Shikano
{"title":"Speech-to-lip movement synthesis maximizing audio-visual joint probability based on EM algorithm","authors":"Satoshi Nakamura, E. Yamamoto, K. Shikano","doi":"10.1109/MMSP.1998.738912","DOIUrl":null,"url":null,"abstract":"We investigate methods using the hidden Markov model (HMM) to drive a lip movement sequence with input speech. We have already investigated a mapping method based on the Viterbi decoding algorithm which converts an input speech to a lip movement sequence through the most likely HMM state sequence conducted by audio HMMs. However, the method contains a substantial problem of producing errors along incorrectly decoded HMM states. This paper newly proposes a method to re-estimate the visual parameters using the HMMs of the audio-visual joint probability under the expectation-maximization (EM) algorithm. In experiments, the proposed mapping method using the EM algorithm shows an error reduction of 26% compared to a method using the Viterbi algorithm at incorrectly decoded bi-labial consonants.","PeriodicalId":180426,"journal":{"name":"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.1998.738912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We investigate methods using the hidden Markov model (HMM) to drive a lip movement sequence with input speech. We have already investigated a mapping method based on the Viterbi decoding algorithm which converts an input speech to a lip movement sequence through the most likely HMM state sequence conducted by audio HMMs. However, the method contains a substantial problem of producing errors along incorrectly decoded HMM states. This paper newly proposes a method to re-estimate the visual parameters using the HMMs of the audio-visual joint probability under the expectation-maximization (EM) algorithm. In experiments, the proposed mapping method using the EM algorithm shows an error reduction of 26% compared to a method using the Viterbi algorithm at incorrectly decoded bi-labial consonants.
基于EM算法最大化视听联合概率的语唇运动合成
我们研究了使用隐马尔可夫模型(HMM)驱动带有输入语音的唇动序列的方法。我们已经研究了一种基于Viterbi解码算法的映射方法,该方法通过音频HMM进行的最有可能的HMM状态序列将输入语音转换为唇动序列。然而,该方法存在一个很大的问题,即在错误解码的HMM状态上产生错误。本文提出了一种利用期望最大化算法下的视听联合概率hmm对视觉参数进行重估计的方法。在实验中,与使用Viterbi算法的方法相比,使用EM算法提出的映射方法在错误解码双唇辅音时的误差减少了26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信