Recommending prime spots of a destination and time to visit from geo-tagged social data

V. Sharma, Kyumin Lee, Jin-Wook Chung
{"title":"Recommending prime spots of a destination and time to visit from geo-tagged social data","authors":"V. Sharma, Kyumin Lee, Jin-Wook Chung","doi":"10.4108/ICST.COLLABORATECOM.2014.257674","DOIUrl":null,"url":null,"abstract":"Planning a trip can be a tedious task. One has to search for what places to visit at a destination (i.e. area) and what time to visit the destination. Sometimes this can be a time-consuming task because there are too much information available, and it is hard for one to choose which information to trust. In this paper we present a recommendation system clustering geo-tagged social data in a destination from each information source - Flickr and Foursquare - and combining the results from these diverse information sources to recommend places to visit. Our experimental results show that our recommendation system automatically suggests prime spots in Yellowstone national park with 0.83 precision and 0.927 NDCG, and in Yosemite national park with 0.8 precision and 0.912 NDCG. In addition, visualizing temporal information of social data helps travelers to decide when to visit a destination.","PeriodicalId":432345,"journal":{"name":"10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.COLLABORATECOM.2014.257674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Planning a trip can be a tedious task. One has to search for what places to visit at a destination (i.e. area) and what time to visit the destination. Sometimes this can be a time-consuming task because there are too much information available, and it is hard for one to choose which information to trust. In this paper we present a recommendation system clustering geo-tagged social data in a destination from each information source - Flickr and Foursquare - and combining the results from these diverse information sources to recommend places to visit. Our experimental results show that our recommendation system automatically suggests prime spots in Yellowstone national park with 0.83 precision and 0.927 NDCG, and in Yosemite national park with 0.8 precision and 0.912 NDCG. In addition, visualizing temporal information of social data helps travelers to decide when to visit a destination.
根据地理标记的社交数据,推荐目的地的最佳景点和游览时间
计划旅行可能是一项乏味的任务。人们必须搜索目的地(即地区)的参观地点以及参观目的地的时间。有时这可能是一项耗时的任务,因为有太多可用的信息,而且很难选择信任哪些信息。在这篇论文中,我们提出了一个推荐系统,将来自每个信息源(Flickr和Foursquare)的带有地理标签的社交数据聚类到一个目的地,并结合这些不同信息源的结果来推荐旅游地点。实验结果表明,我们的推荐系统自动推荐黄石国家公园的最佳景点,精度为0.83,NDCG为0.927,优胜美地国家公园的最佳景点推荐精度为0.8,NDCG为0.912。此外,可视化社会数据的时间信息有助于旅行者决定何时访问目的地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信