{"title":"The Approach of Machine Learning to Optimize the Bank-Customer Interaction at Pandemic Epochs","authors":"H. Nieto-Chaupis","doi":"10.1109/SNPD54884.2022.10051784","DOIUrl":null,"url":null,"abstract":"Along the pandemic created by the Corona virus 2019 (Covid-19 in shorthand), the global economy was observed to experience various turbulent months that were reflected by the increasing of unemployment and the apparition of a procrastinator behavior in all those customers that received a loan at the months before the beginning of pandemic. Because the apparition of pandemic was totally random, it had effects on the micro-economy that in most cases have turned out on the cuts of salaries. From a basic modeling of loan and Gaussian approach, the criteria of Mitchell are employed. The resulting simulations have yielded that up to a 50% of loaned volume of cash would be recovery. It was found that entropic situations would be in part a cause for the deficient management of loans in epochs of pandemic and crisis.","PeriodicalId":425462,"journal":{"name":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD54884.2022.10051784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Along the pandemic created by the Corona virus 2019 (Covid-19 in shorthand), the global economy was observed to experience various turbulent months that were reflected by the increasing of unemployment and the apparition of a procrastinator behavior in all those customers that received a loan at the months before the beginning of pandemic. Because the apparition of pandemic was totally random, it had effects on the micro-economy that in most cases have turned out on the cuts of salaries. From a basic modeling of loan and Gaussian approach, the criteria of Mitchell are employed. The resulting simulations have yielded that up to a 50% of loaned volume of cash would be recovery. It was found that entropic situations would be in part a cause for the deficient management of loans in epochs of pandemic and crisis.