SVM-based sketch recognition: which hyperparameter interval to try?

Kemal Tugrul Yesilbek, Cansu Sen, S. Cakmak, T. M. Sezgin
{"title":"SVM-based sketch recognition: which hyperparameter interval to try?","authors":"Kemal Tugrul Yesilbek, Cansu Sen, S. Cakmak, T. M. Sezgin","doi":"10.2312/EXP.20151184","DOIUrl":null,"url":null,"abstract":"Hyperparameters are among the most crucial factors that affect the performance of machine learning algorithms. In general, there is no direct method for determining a set of satisfactory parameters, so hyperparameter search needs to be conducted each time a model is to be trained. In this work, we analyze how similar hyperparameters perform across various datasets from the sketch recognition domain. Results show that hyperparameter search space can be reduced to a subspace despite differences in characteristics of datasets.","PeriodicalId":289409,"journal":{"name":"International Symposium on Sketch-Based Interfaces and Modeling","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Sketch-Based Interfaces and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EXP.20151184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Hyperparameters are among the most crucial factors that affect the performance of machine learning algorithms. In general, there is no direct method for determining a set of satisfactory parameters, so hyperparameter search needs to be conducted each time a model is to be trained. In this work, we analyze how similar hyperparameters perform across various datasets from the sketch recognition domain. Results show that hyperparameter search space can be reduced to a subspace despite differences in characteristics of datasets.
基于svm的草图识别:尝试哪个超参数间隔?
超参数是影响机器学习算法性能的最关键因素之一。一般来说,没有直接的方法来确定一组满意的参数,所以每次训练模型时都需要进行超参数搜索。在这项工作中,我们分析了类似的超参数如何在草图识别领域的各种数据集上执行。结果表明,尽管数据集的特征不同,但超参数搜索空间可以被简化为一个子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信