Locally weighted Markov random fields for cortical segmentation

M. Cardoso, M. Clarkson, M. Modat, G. Ridgway, S. Ourselin
{"title":"Locally weighted Markov random fields for cortical segmentation","authors":"M. Cardoso, M. Clarkson, M. Modat, G. Ridgway, S. Ourselin","doi":"10.1109/ISBI.2010.5490146","DOIUrl":null,"url":null,"abstract":"Segmenting the human brain from magnetic resonance images is a challenging task due to the convoluted shape of the cortex, noise, intensity non-uniformity and partial volume effects. We propose a new way to overcome part of the bias-variance tradeoff existent in any segmentation technique by locally varying the behaviour of the model. We developed a novel metric based on the Laplacian of the geodesic distance to localise and iteratively modify the prior information and Markov random field weights, leading to a better delineation of deep sulci and narrow gyri. Experiments performed on 20 Brainweb datasets show statistically significant improvements in Dice scores and partial volume estimation when compared to two well established techniques.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Segmenting the human brain from magnetic resonance images is a challenging task due to the convoluted shape of the cortex, noise, intensity non-uniformity and partial volume effects. We propose a new way to overcome part of the bias-variance tradeoff existent in any segmentation technique by locally varying the behaviour of the model. We developed a novel metric based on the Laplacian of the geodesic distance to localise and iteratively modify the prior information and Markov random field weights, leading to a better delineation of deep sulci and narrow gyri. Experiments performed on 20 Brainweb datasets show statistically significant improvements in Dice scores and partial volume estimation when compared to two well established techniques.
皮质分割的局部加权马尔可夫随机场
由于大脑皮层复杂的形状、噪声、强度不均匀性和部分体积效应,从磁共振图像中分割人脑是一项具有挑战性的任务。我们提出了一种新的方法,通过局部改变模型的行为来克服任何分割技术中存在的部分偏差-方差权衡。我们开发了一种基于测地线距离拉普拉斯算子的新度量,用于定位和迭代修改先验信息和马尔可夫随机场权重,从而更好地描绘深沟和窄脑回。在20个Brainweb数据集上进行的实验显示,与两种成熟的技术相比,Dice得分和部分体积估计在统计上有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信