Student Engagement Dataset

K. Delgado, Juan Manuel Origgi, Tania Hasanpoor, Hao Yu, Danielle A. Allessio, I. Arroyo, William Lee, Margrit Betke, B. Woolf, Sarah Adel Bargal
{"title":"Student Engagement Dataset","authors":"K. Delgado, Juan Manuel Origgi, Tania Hasanpoor, Hao Yu, Danielle A. Allessio, I. Arroyo, William Lee, Margrit Betke, B. Woolf, Sarah Adel Bargal","doi":"10.1109/ICCVW54120.2021.00405","DOIUrl":null,"url":null,"abstract":"A major challenge for online learning is the inability of systems to support student emotion and to maintain student engagement. In response to this challenge, computer vision has become an embedded feature in some instructional applications. In this paper, we propose a video dataset of college students solving math problems on the educational platform MathSpring.org with a front facing camera collecting visual feedback of student gestures. The video dataset is annotated to indicate whether students’ attention at specific frames is engaged or wandering. In addition, we train baselines for a computer vision module that determines the extent of student engagement during remote learning. Baselines include state-of-the-art deep learning image classifiers and traditional conditional and logistic regression for head pose estimation. We then incorporate a gaze baseline into the MathSpring learning platform, and we are evaluating its performance with the currently implemented approach.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A major challenge for online learning is the inability of systems to support student emotion and to maintain student engagement. In response to this challenge, computer vision has become an embedded feature in some instructional applications. In this paper, we propose a video dataset of college students solving math problems on the educational platform MathSpring.org with a front facing camera collecting visual feedback of student gestures. The video dataset is annotated to indicate whether students’ attention at specific frames is engaged or wandering. In addition, we train baselines for a computer vision module that determines the extent of student engagement during remote learning. Baselines include state-of-the-art deep learning image classifiers and traditional conditional and logistic regression for head pose estimation. We then incorporate a gaze baseline into the MathSpring learning platform, and we are evaluating its performance with the currently implemented approach.
学生参与度数据集
在线学习的一个主要挑战是系统无法支持学生的情感和保持学生的参与。为了应对这一挑战,计算机视觉已经成为一些教学应用的嵌入式功能。在本文中,我们提出了一个大学生在教育平台MathSpring.org上解决数学问题的视频数据集,该数据集使用前置摄像头收集学生手势的视觉反馈。对视频数据集进行注释,以指示学生在特定帧上的注意力是集中还是分散。此外,我们为计算机视觉模块训练基线,该模块确定了远程学习期间学生参与的程度。基线包括最先进的深度学习图像分类器和用于头部姿势估计的传统条件和逻辑回归。然后,我们将注视基线合并到MathSpring学习平台中,并使用当前实现的方法评估其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信