Index assignment for predictive wideband LSF quantization

V.T. Ruoppila, S. Ragot
{"title":"Index assignment for predictive wideband LSF quantization","authors":"V.T. Ruoppila, S. Ragot","doi":"10.1109/SCFT.2000.878415","DOIUrl":null,"url":null,"abstract":"In this paper we summarize some results derived earlier for the mean-square channel distortion of an autoregressive moving average (ARMA) vector quantizer with a maximum entropy encoder when the channel is assumed binary symmetric and memoryless. We discuss the required assumptions and their practical consequences in index assignment of ARMA vector quantizers. The discussion relates also to channel optimization of these quantizers. Furthermore, we compare noisy channel performance of memoryless, moving average, and autoregressive two-stage vector quantizers in line spectrum frequency quantization applied to wideband speech coding.","PeriodicalId":359453,"journal":{"name":"2000 IEEE Workshop on Speech Coding. Proceedings. Meeting the Challenges of the New Millennium (Cat. No.00EX421)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Workshop on Speech Coding. Proceedings. Meeting the Challenges of the New Millennium (Cat. No.00EX421)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCFT.2000.878415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we summarize some results derived earlier for the mean-square channel distortion of an autoregressive moving average (ARMA) vector quantizer with a maximum entropy encoder when the channel is assumed binary symmetric and memoryless. We discuss the required assumptions and their practical consequences in index assignment of ARMA vector quantizers. The discussion relates also to channel optimization of these quantizers. Furthermore, we compare noisy channel performance of memoryless, moving average, and autoregressive two-stage vector quantizers in line spectrum frequency quantization applied to wideband speech coding.
预测宽带LSF量化的指标分配
本文总结了在假定信道为二进制对称且无记忆时,具有最大熵编码器的自回归移动平均(ARMA)矢量量化器的均方信道失真的一些先前得到的结果。我们讨论了在ARMA矢量量化器的指标分配中所需要的假设及其实际结果。讨论还涉及到这些量化器的信道优化。此外,我们比较了无记忆、移动平均和自回归两级矢量量化器在应用于宽带语音编码的线谱频率量化中的噪声信道性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信