Code-to-Code Search Based on Deep Neural Network and Code Mutation

Yuji Fujiwara, Norihiro Yoshida, Eunjong Choi, Katsuro Inoue
{"title":"Code-to-Code Search Based on Deep Neural Network and Code Mutation","authors":"Yuji Fujiwara, Norihiro Yoshida, Eunjong Choi, Katsuro Inoue","doi":"10.1109/IWSC.2019.8665853","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) have been often used for the labeling of image files (e.g., object detection). Although they can be applied for the labeling of code fragment (i.e., code-to-code search) in software engineering, a large number of code fragments are required for each label in the learning process of DNNs. In this paper, we present an approach for code-to-code search based on a DNN model and code mutation for generating enough number of code fragments for each label. The preliminary experiment shows high precision and recall of the proposed approach.","PeriodicalId":341328,"journal":{"name":"2019 IEEE 13th International Workshop on Software Clones (IWSC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Workshop on Software Clones (IWSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSC.2019.8665853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Deep Neural Networks (DNNs) have been often used for the labeling of image files (e.g., object detection). Although they can be applied for the labeling of code fragment (i.e., code-to-code search) in software engineering, a large number of code fragments are required for each label in the learning process of DNNs. In this paper, we present an approach for code-to-code search based on a DNN model and code mutation for generating enough number of code fragments for each label. The preliminary experiment shows high precision and recall of the proposed approach.
基于深度神经网络和编码变异的码对码搜索
深度神经网络(dnn)经常用于图像文件的标记(例如,目标检测)。虽然它们可以应用于软件工程中代码片段的标注(即代码到代码的搜索),但在dnn的学习过程中,每个标签都需要大量的代码片段。在本文中,我们提出了一种基于DNN模型和代码突变的代码到代码搜索方法,为每个标签生成足够数量的代码片段。初步实验表明,该方法具有较高的查全率和查准率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信