Efficient Algorithm-Based Fault Tolerance for Sparse Matrix Operations

A. Schöll, Claus Braun, M. Kochte, H. Wunderlich
{"title":"Efficient Algorithm-Based Fault Tolerance for Sparse Matrix Operations","authors":"A. Schöll, Claus Braun, M. Kochte, H. Wunderlich","doi":"10.1109/DSN.2016.31","DOIUrl":null,"url":null,"abstract":"We propose a fault tolerance approach for sparse matrix operations that detects and implicitly locates errors in the results for efficient local correction. This approach reduces the runtime overhead for fault tolerance and provides high error coverage. Existing algorithm-based fault tolerance approaches for sparse matrix operations detect and correct errors, but they often rely on expensive error localization steps. General checkpointing schemes can induce large recovery cost for high error rates. For sparse matrix-vector multiplications, experimental results show an average reduction in runtime overhead of 43.8%, while the error coverage is on average improved by 52.2% compared to related work. The practical applicability is demonstrated in a case study using the iterative Preconditioned Conjugate Gradient solver. When scaling the error rate by four orders of magnitude, the average runtime overhead increases only by 31.3% compared to low error rates.","PeriodicalId":102292,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2016.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We propose a fault tolerance approach for sparse matrix operations that detects and implicitly locates errors in the results for efficient local correction. This approach reduces the runtime overhead for fault tolerance and provides high error coverage. Existing algorithm-based fault tolerance approaches for sparse matrix operations detect and correct errors, but they often rely on expensive error localization steps. General checkpointing schemes can induce large recovery cost for high error rates. For sparse matrix-vector multiplications, experimental results show an average reduction in runtime overhead of 43.8%, while the error coverage is on average improved by 52.2% compared to related work. The practical applicability is demonstrated in a case study using the iterative Preconditioned Conjugate Gradient solver. When scaling the error rate by four orders of magnitude, the average runtime overhead increases only by 31.3% compared to low error rates.
稀疏矩阵运算的高效算法容错
我们提出了一种稀疏矩阵运算的容错方法,该方法可以检测并隐式定位结果中的错误,从而实现有效的局部校正。这种方法减少了容错的运行时开销,并提供了较高的错误覆盖率。现有的基于算法的稀疏矩阵容错方法可以检测和纠正错误,但它们往往依赖于昂贵的错误定位步骤。一般的检查点方案由于错误率高,恢复成本高。对于稀疏矩阵-向量乘法,实验结果表明,与相关工作相比,该方法平均减少了43.8%的运行时开销,平均提高了52.2%的错误覆盖率。应用迭代预条件共轭梯度解算器进行了实例分析,证明了该方法的实用性。当错误率增加4个数量级时,与低错误率相比,平均运行时开销仅增加31.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信