Improving Graph Convolutional Networks with Transformer Layer in social-based items recommendation

T. Hoang, T. Pham, Viet-Cuong Ta
{"title":"Improving Graph Convolutional Networks with Transformer Layer in social-based items recommendation","authors":"T. Hoang, T. Pham, Viet-Cuong Ta","doi":"10.1109/KSE53942.2021.9648823","DOIUrl":null,"url":null,"abstract":"With the emergence of online social networks, social-based items recommendation has become a popular research direction. Recently, Graph Convolutional Networks have shown promising results by modeling the information diffusion process in graphs. It provides a unified framework for graph embedding that can leverage both the social graph structure and node features information. In this paper, we improve the embedding output of the graph-based convolution layer by adding a number of transformer layers. The transformer layers with attention architecture help discover frequent patterns in the embedding space which increase the predictive power of the model in the downstream tasks. Our approach is tested on two social-based items recommendation datasets, Ciao and Epinions and our model outperforms other graph-based recommendation baselines.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the emergence of online social networks, social-based items recommendation has become a popular research direction. Recently, Graph Convolutional Networks have shown promising results by modeling the information diffusion process in graphs. It provides a unified framework for graph embedding that can leverage both the social graph structure and node features information. In this paper, we improve the embedding output of the graph-based convolution layer by adding a number of transformer layers. The transformer layers with attention architecture help discover frequent patterns in the embedding space which increase the predictive power of the model in the downstream tasks. Our approach is tested on two social-based items recommendation datasets, Ciao and Epinions and our model outperforms other graph-based recommendation baselines.
基于社交的物品推荐中变压器层改进图卷积网络
随着在线社交网络的出现,基于社交的物品推荐已经成为一个热门的研究方向。近年来,图卷积网络通过对图中的信息扩散过程进行建模,显示出良好的效果。它为图嵌入提供了一个统一的框架,可以同时利用社交图结构和节点特征信息。在本文中,我们通过增加一些变压器层来改善基于图的卷积层的嵌入输出。具有注意力结构的变压器层有助于发现嵌入空间中的频繁模式,从而提高模型对下游任务的预测能力。我们的方法在两个基于社交的项目推荐数据集(Ciao和Epinions)上进行了测试,我们的模型优于其他基于图的推荐基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信