Flexible structured sparse representation for robust visual tracking

Tianxiang Bai, Youfu Li, Yazhe Tang
{"title":"Flexible structured sparse representation for robust visual tracking","authors":"Tianxiang Bai, Youfu Li, Yazhe Tang","doi":"10.1109/MFI.2012.6343073","DOIUrl":null,"url":null,"abstract":"In this work, we propose a robust and flexible appearance model based on the structured sparse representation framework. In our method, we model the complex nonlinear appearance manifold and occlusions as a sparse linear combination of structured union of subspaces in a basis library consisting of multiple learned low dimensional subspaces and a partitioned occlusion template set. In order to enhance the discriminative power of the model, a number of clustered background subspaces are also added into the basis library and updated during tracking. With the Block Orthogonal Matching Pursuit (BOMP) algorithm, we show that the new structured sparse representation based appearance model facilitates the tracking performance compared with the prototype model and other state of the art tracking algorithms.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose a robust and flexible appearance model based on the structured sparse representation framework. In our method, we model the complex nonlinear appearance manifold and occlusions as a sparse linear combination of structured union of subspaces in a basis library consisting of multiple learned low dimensional subspaces and a partitioned occlusion template set. In order to enhance the discriminative power of the model, a number of clustered background subspaces are also added into the basis library and updated during tracking. With the Block Orthogonal Matching Pursuit (BOMP) algorithm, we show that the new structured sparse representation based appearance model facilitates the tracking performance compared with the prototype model and other state of the art tracking algorithms.
用于鲁棒视觉跟踪的灵活结构化稀疏表示
在这项工作中,我们提出了一个基于结构化稀疏表示框架的鲁棒灵活的外观模型。在我们的方法中,我们将复杂的非线性外观流形和遮挡建模为由多个学习的低维子空间和分割的遮挡模板集组成的基库中的子空间的结构化联合的稀疏线性组合。为了增强模型的判别能力,在基库中加入了多个聚类背景子空间,并在跟踪过程中进行更新。通过块正交匹配追踪(BOMP)算法,我们证明了与原型模型和其他先进的跟踪算法相比,新的基于结构化稀疏表示的外观模型更有利于跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信