USING GENETIC ALGORITHM OPTIMIZING THE CUTTING PARAMETERS OF AWJM PROCESS FOR ALUMINIUM 6061 ALLOY

Y. Brucely, K. S. J. Aultrin, Dawn Jaison
{"title":"USING GENETIC ALGORITHM OPTIMIZING THE CUTTING PARAMETERS OF AWJM PROCESS FOR ALUMINIUM 6061 ALLOY","authors":"Y. Brucely, K. S. J. Aultrin, Dawn Jaison","doi":"10.23883/ijrter.2019.5085.2rydf","DOIUrl":null,"url":null,"abstract":"For the past years we have witnessed a rapid progress in the development of harder, tough and complexity to machine metals and alloys. Abrasive water jet machine is one of the recently developed hybrids, nontraditional machining process in processing different kinds of hard-tomachining the materials nowadays. It is a reasonable method to process the heat sensible material without generation of heat while machining. Machining limitations play the lead role in defining the machine economics and quality of machining. In this study the significance of Pressure, Abrasive flow rate, Orifice diameter, focusing nozzle diameter and Standoff distance, process parameters, on metal removal rate and Strontium of Aluminium 6061 alloy which is machined by Abrasive water jet machine was experimentally completed and analyze. According to Response Surface Methodology design, different experiments were conducted with the combination of input parameters on this alloy. This paper presents the Prediction and Optimization of metal removal rate and Strontium on Aluminium 6061 alloy using multi objective Genetic Algorithm.","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5085.2rydf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For the past years we have witnessed a rapid progress in the development of harder, tough and complexity to machine metals and alloys. Abrasive water jet machine is one of the recently developed hybrids, nontraditional machining process in processing different kinds of hard-tomachining the materials nowadays. It is a reasonable method to process the heat sensible material without generation of heat while machining. Machining limitations play the lead role in defining the machine economics and quality of machining. In this study the significance of Pressure, Abrasive flow rate, Orifice diameter, focusing nozzle diameter and Standoff distance, process parameters, on metal removal rate and Strontium of Aluminium 6061 alloy which is machined by Abrasive water jet machine was experimentally completed and analyze. According to Response Surface Methodology design, different experiments were conducted with the combination of input parameters on this alloy. This paper presents the Prediction and Optimization of metal removal rate and Strontium on Aluminium 6061 alloy using multi objective Genetic Algorithm.
采用遗传算法对6061铝合金awjm工艺的切削参数进行了优化
在过去的几年里,我们见证了金属和合金在更硬、韧性和复杂性方面的快速发展。磨料水射流加工是近年来发展起来的一种混合、非传统的加工方法,用于加工各种难加工材料。加工过程中不产生热量是加工热感材料的一种合理方法。加工限制在确定机械经济性和加工质量方面起着主导作用。实验完成并分析了磨料水射流机加工6061铝合金的压力、磨料流量、孔直径、聚焦喷嘴直径和距、工艺参数对金属去除率和锶的影响。根据响应面法设计,对该合金进行了不同输入参数组合的实验。本文采用多目标遗传算法对6061铝合金的金属去除率和锶进行了预测和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信