Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals

Abhishek Kumar, M. Kolekar
{"title":"Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals","authors":"Abhishek Kumar, M. Kolekar","doi":"10.1109/MEDCOM.2014.7006043","DOIUrl":null,"url":null,"abstract":"Analysis of EEG is the primary method for diagnosis of epilepsy. In this paper discrete wavelet transform is used for the time-frequency analysis of EEG signal. Using discrete wavelet transform, EEG signal is decomposed into five different frequency bands namely delta, theta, alpha, beta and gamma. Only theta, alpha and beta carry seizure information. Statistical feature like energy, variance and zero crossing rate and nonlinear feature like fractal dimension is extracted from each of the three sub bands and fed to support vector machine classifier. Support vector machine classifies the input EEG signal into seizure free and seizure signal. Experimental results show that the proposed method classifies EEG signals with excellent accuracy, sensitivity and specificity compared to the existing methods.","PeriodicalId":246177,"journal":{"name":"2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEDCOM.2014.7006043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Analysis of EEG is the primary method for diagnosis of epilepsy. In this paper discrete wavelet transform is used for the time-frequency analysis of EEG signal. Using discrete wavelet transform, EEG signal is decomposed into five different frequency bands namely delta, theta, alpha, beta and gamma. Only theta, alpha and beta carry seizure information. Statistical feature like energy, variance and zero crossing rate and nonlinear feature like fractal dimension is extracted from each of the three sub bands and fed to support vector machine classifier. Support vector machine classifies the input EEG signal into seizure free and seizure signal. Experimental results show that the proposed method classifies EEG signals with excellent accuracy, sensitivity and specificity compared to the existing methods.
基于脑电信号小波分析的癫痫发作检测的机器学习方法
脑电图分析是诊断癫痫的主要方法。本文采用离散小波变换对脑电信号进行时频分析。利用离散小波变换将脑电信号分解为δ、θ、α、β和γ五个不同的频段。只有θ, α和β携带癫痫信息。从每个子带中提取能量、方差、过零率等统计特征和分形维数等非线性特征,并将其输入到支持向量机分类器中。支持向量机将输入的脑电信号分为无发作信号和发作信号。实验结果表明,与现有方法相比,该方法对脑电信号的分类具有良好的准确性、灵敏度和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信