Fine-grain priority scheduling on multi-channel memory systems

Zhichun Zhu, Zhao Zhang, Xiaodong Zhang
{"title":"Fine-grain priority scheduling on multi-channel memory systems","authors":"Zhichun Zhu, Zhao Zhang, Xiaodong Zhang","doi":"10.1109/HPCA.2002.995702","DOIUrl":null,"url":null,"abstract":"Configurations of contemporary DRAM memory systems become increasingly complex. A recent study shows that the application performance is highly sensitive to choices of configurations. In this study we show that, by utilizing fine-grain priority access scheduling, we are able to find a workload independent configuration that achieves optimal performance on a multichannel memory system. Our approach can well utilize the available high concurrency and high bandwidth on such memory systems, and effectively reduce the memory stall time of memory-intensive applications. Conducting execution-driven simulation of a 4-way issue, a 2 GHz processor, we show that the average performance improvement for fifteen memory-intensive SPEC2000 programs by using an optimized fine-grain priority scheduling is about 13% and 8% for a 2-channel and a 4-channel Direct Rambus DRAM memory system, respectively, compared with gang scheduling. Compared with burst scheduling, the average performance improvement is 16% and 14% for the 2-channel and 4-channel memory systems, respectively.","PeriodicalId":408620,"journal":{"name":"Proceedings Eighth International Symposium on High Performance Computer Architecture","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2002.995702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Configurations of contemporary DRAM memory systems become increasingly complex. A recent study shows that the application performance is highly sensitive to choices of configurations. In this study we show that, by utilizing fine-grain priority access scheduling, we are able to find a workload independent configuration that achieves optimal performance on a multichannel memory system. Our approach can well utilize the available high concurrency and high bandwidth on such memory systems, and effectively reduce the memory stall time of memory-intensive applications. Conducting execution-driven simulation of a 4-way issue, a 2 GHz processor, we show that the average performance improvement for fifteen memory-intensive SPEC2000 programs by using an optimized fine-grain priority scheduling is about 13% and 8% for a 2-channel and a 4-channel Direct Rambus DRAM memory system, respectively, compared with gang scheduling. Compared with burst scheduling, the average performance improvement is 16% and 14% for the 2-channel and 4-channel memory systems, respectively.
多通道存储系统的细粒度优先级调度
当代DRAM存储系统的配置变得越来越复杂。最近的一项研究表明,应用程序的性能对配置的选择非常敏感。在这项研究中,我们表明,通过利用细粒度优先访问调度,我们能够找到一个独立于工作负载的配置,在多通道存储器系统上实现最佳性能。我们的方法可以很好地利用此类内存系统上可用的高并发性和高带宽,并有效地减少内存密集型应用程序的内存失速时间。通过对一个4路问题(一个2 GHz处理器)的执行驱动仿真,我们发现在2通道和4通道Direct Rambus DRAM存储系统中,使用优化的细粒度优先级调度对15个内存密集型SPEC2000程序的平均性能提高分别约为13%和8%。与突发调度相比,2通道和4通道存储系统的平均性能分别提高了16%和14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信