Y. Zheng, Z. An, H. Seifert, T. Kunze, P. Smyrek, Wilhelm Pfleging, V. Lang, A. Lasagni
{"title":"Laser interference patterning and laser-induced periodic surface structure formation on metallic substrates","authors":"Y. Zheng, Z. An, H. Seifert, T. Kunze, P. Smyrek, Wilhelm Pfleging, V. Lang, A. Lasagni","doi":"10.1109/3M-NANO.2016.7824955","DOIUrl":null,"url":null,"abstract":"Laser-assisted modification of metals, polymers or ceramics yields a precise adjustment of wettability, bio-compatibility or tribological properties for a broad range of applications. Two types of advanced laser processing technologies — direct laser interference patterning and ultrafast laser-induced periodic surface structuring — were applied in this study. Formation of laser-induced periodic surface structures on metallic substrate was investigated systematically as function of wavelength, pulse duration, laser fluence and scanning speed. Line-like periodic patterns with adjustable periodicity were successfully formed on metallic substrates. For lithium-ion batteries, composite electrode materials were deposited by tape-casting on laser micro/nano-structured metallic current collectors. Tensile strength measurements revealed a tremendous improvement of film adhesion.","PeriodicalId":273846,"journal":{"name":"2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2016.7824955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Laser-assisted modification of metals, polymers or ceramics yields a precise adjustment of wettability, bio-compatibility or tribological properties for a broad range of applications. Two types of advanced laser processing technologies — direct laser interference patterning and ultrafast laser-induced periodic surface structuring — were applied in this study. Formation of laser-induced periodic surface structures on metallic substrate was investigated systematically as function of wavelength, pulse duration, laser fluence and scanning speed. Line-like periodic patterns with adjustable periodicity were successfully formed on metallic substrates. For lithium-ion batteries, composite electrode materials were deposited by tape-casting on laser micro/nano-structured metallic current collectors. Tensile strength measurements revealed a tremendous improvement of film adhesion.