T. Iwaki, S. Ishiwaki, T. Sawada, Masayoshi Yamamoto
{"title":"An analysis of false turn-on phenomenon of GaN HEMT with parasitic components","authors":"T. Iwaki, S. Ishiwaki, T. Sawada, Masayoshi Yamamoto","doi":"10.1109/INTLEC.2017.8214160","DOIUrl":null,"url":null,"abstract":"Wide band gap power semiconductor devices are now replacing the Si-MOSFET or IGBT. GaN-HEMT achieves the reduction in size and weight, thanks to its high frequency switching behavior. However, its high-speed switching characteristics and low threshold voltage may cause a false turn-on phenomenon, which is a fatal effect for the applications. It is urgent issue to tackle and avoid this problem by modifying the circuit conditions. We described differential equations from simplified equivalent circuit of inverter, and algebraically solved with some assumptions. At the same time, drain voltage equation is also developed. As a result, the gate voltage fluctuation was described as a composite waveform including two LC resonance phenomenon, which occur on gate drive circuit and main power flow.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Wide band gap power semiconductor devices are now replacing the Si-MOSFET or IGBT. GaN-HEMT achieves the reduction in size and weight, thanks to its high frequency switching behavior. However, its high-speed switching characteristics and low threshold voltage may cause a false turn-on phenomenon, which is a fatal effect for the applications. It is urgent issue to tackle and avoid this problem by modifying the circuit conditions. We described differential equations from simplified equivalent circuit of inverter, and algebraically solved with some assumptions. At the same time, drain voltage equation is also developed. As a result, the gate voltage fluctuation was described as a composite waveform including two LC resonance phenomenon, which occur on gate drive circuit and main power flow.