Absolute Value Principal Components Analysis (AVPCA) and Parameter Estimation (PE) to bearing fault detection using rotor speed signal monitoring — A comparative study

M. Hamadache, Dongik Lee
{"title":"Absolute Value Principal Components Analysis (AVPCA) and Parameter Estimation (PE) to bearing fault detection using rotor speed signal monitoring — A comparative study","authors":"M. Hamadache, Dongik Lee","doi":"10.1109/TENCONSPRING.2016.7519434","DOIUrl":null,"url":null,"abstract":"In this paper, a comparative experimental study between the Parameter Estimation (PE) technique and the Absolute Value Principal Component Analysis (AVPCA) algorithm to bearing fault detection using rotor speed signal monitoring is represented. The PE technique relies on the residuals between the input/output (Voltage/Speed) signals of the real system and of the estimated model. AVPCA, in other hand base on the Sum Square Error (SSE) distance between the training-databases and the tested-databases from just only the output signal (Speed) and its minimum. The experimental results reveal that the AVPCA algorithm is more effective in detecting bearing faults than the PE technique using rotor speed signal monitoring.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a comparative experimental study between the Parameter Estimation (PE) technique and the Absolute Value Principal Component Analysis (AVPCA) algorithm to bearing fault detection using rotor speed signal monitoring is represented. The PE technique relies on the residuals between the input/output (Voltage/Speed) signals of the real system and of the estimated model. AVPCA, in other hand base on the Sum Square Error (SSE) distance between the training-databases and the tested-databases from just only the output signal (Speed) and its minimum. The experimental results reveal that the AVPCA algorithm is more effective in detecting bearing faults than the PE technique using rotor speed signal monitoring.
基于转子转速信号监测的绝对主成分分析(AVPCA)和参数估计(PE)在轴承故障检测中的比较研究
本文对参数估计(PE)技术与绝对主成分分析(AVPCA)算法在转子转速信号监测中进行轴承故障检测的对比实验研究。PE技术依赖于实际系统的输入/输出(电压/速度)信号与估计模型之间的残差。另一方面,AVPCA基于训练数据库和测试数据库之间的和平方误差(SSE)距离,仅从输出信号(速度)及其最小值。实验结果表明,在转子转速信号监测中,AVPCA算法比PE算法更能有效地检测轴承故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信