Review of Gaussian Mixture Model-Based Probabilistic Load Flow Calculations

B. Prusty, Kishore Bingi, Neeraj Gupta
{"title":"Review of Gaussian Mixture Model-Based Probabilistic Load Flow Calculations","authors":"B. Prusty, Kishore Bingi, Neeraj Gupta","doi":"10.1109/ICICCSP53532.2022.9862332","DOIUrl":null,"url":null,"abstract":"It is challenging to approximate multimodal distributions of probabilistic load flow (PLF) result variables stemming from discrete and non-standard continuous input random variables (RVs). The Gaussian mixture model (GMM) approximates the probability distribution of the above input RVs as a “K” weighted sum of Gaussian distributions. The expectation-maximization (EM) algorithm effectively estimates the mixture component parameters. Nevertheless, knowing the true number of components a priori is vital. In pursuing a pragmatic GMM-based PLF, several approaches have been suggested in the literature to determine the true number of mixture components and parameter initialization. This paper comprehensively reviews GMM-based PLF using EM. The criteria adopted in the literature for selecting the value of “K” and the initialization strategies are given special attention. This detailed review is expected to help novice readers in the area of GMM-based PLF.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is challenging to approximate multimodal distributions of probabilistic load flow (PLF) result variables stemming from discrete and non-standard continuous input random variables (RVs). The Gaussian mixture model (GMM) approximates the probability distribution of the above input RVs as a “K” weighted sum of Gaussian distributions. The expectation-maximization (EM) algorithm effectively estimates the mixture component parameters. Nevertheless, knowing the true number of components a priori is vital. In pursuing a pragmatic GMM-based PLF, several approaches have been suggested in the literature to determine the true number of mixture components and parameter initialization. This paper comprehensively reviews GMM-based PLF using EM. The criteria adopted in the literature for selecting the value of “K” and the initialization strategies are given special attention. This detailed review is expected to help novice readers in the area of GMM-based PLF.
基于高斯混合模型的概率潮流计算综述
基于离散和非标准连续输入随机变量(RVs)的概率负荷流(PLF)结果变量的多模态分布是一个具有挑战性的问题。高斯混合模型(GMM)将上述输入rv的概率分布近似为高斯分布的“K”加权和。期望最大化(EM)算法可以有效地估计混合成分参数。然而,先验地知道组件的真实数量是至关重要的。为了追求实用的基于gmm的PLF,文献中提出了几种方法来确定混合成分的真实数量和参数初始化。本文综合评述了基于gmm的基于EM的PLF,并特别注意了文献中选择K值的准则和初始化策略。这篇详细的综述有望帮助新手读者在基于gmm的PLF领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信