Graph Alignment for Cross-Domain Text-to-SQL

Yadong Liu, Yahong Hu, Zhen Li, Zhengdong Zhu
{"title":"Graph Alignment for Cross-Domain Text-to-SQL","authors":"Yadong Liu, Yahong Hu, Zhen Li, Zhengdong Zhu","doi":"10.1109/ICSP54964.2022.9778427","DOIUrl":null,"url":null,"abstract":"Text-to-SQL, the task of translating the natural language utterance into SQL, has attracted much attention recently. Under the cross-domain setting, the traditional semantic parse model is difficult to adapt to the invisible database schema. The key to being able to better handle cross-domain issues lies in the encoding method for modeling the natural language utterance and the database schema and establishing alignment between them. We propose a Graph Alignment for cross-domain Text-to-SQL (GASQL) to provide a method that unified encodes the natural language utterance and the database schema. Following the unified encoding method, we propose a well-designed graph alignment module to further learn the alignment between the natural language utterance and the database schema. We conducted experiments on the challenging Spider benchmark, and the results proved that our model can align the natural language utterance and database schema well, and achieved good results.","PeriodicalId":363766,"journal":{"name":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP54964.2022.9778427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text-to-SQL, the task of translating the natural language utterance into SQL, has attracted much attention recently. Under the cross-domain setting, the traditional semantic parse model is difficult to adapt to the invisible database schema. The key to being able to better handle cross-domain issues lies in the encoding method for modeling the natural language utterance and the database schema and establishing alignment between them. We propose a Graph Alignment for cross-domain Text-to-SQL (GASQL) to provide a method that unified encodes the natural language utterance and the database schema. Following the unified encoding method, we propose a well-designed graph alignment module to further learn the alignment between the natural language utterance and the database schema. We conducted experiments on the challenging Spider benchmark, and the results proved that our model can align the natural language utterance and database schema well, and achieved good results.
跨域文本到sql的图形对齐
文本到SQL (Text-to-SQL)是将自然语言的话语转换为SQL的任务,近年来受到了广泛的关注。在跨域设置下,传统的语义解析模型难以适应不可见的数据库模式。能够更好地处理跨领域问题的关键在于对自然语言话语和数据库模式进行建模的编码方法,并建立它们之间的一致性。本文提出了一种跨域文本到sql (GASQL)的图对齐方法,为自然语言话语和数据库模式的统一编码提供了一种方法。在统一编码方法的基础上,我们提出了一个精心设计的图形对齐模块,进一步学习自然语言话语与数据库模式之间的对齐。我们在具有挑战性的Spider基准上进行了实验,结果证明我们的模型可以很好地将自然语言话语和数据库模式对齐,并取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信