Graphical stochastic models for tracking applications with variational message passing inference

Felix Trusheim, A. Condurache, A. Mertins
{"title":"Graphical stochastic models for tracking applications with variational message passing inference","authors":"Felix Trusheim, A. Condurache, A. Mertins","doi":"10.1109/IPTA.2016.7820985","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel, highly-adoptable, state-estimation filter based on the framework of graphical stochastical models and variational message passing inference. We evaluate our method on both real and simulated data for tracking applications. Our experimental results show that the proposed approach offers qualitative and computational advantages over established filter methods in practical situations, where the noise within a process is not simply a Gaussian noise, but rather described by a more complex distribution.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a novel, highly-adoptable, state-estimation filter based on the framework of graphical stochastical models and variational message passing inference. We evaluate our method on both real and simulated data for tracking applications. Our experimental results show that the proposed approach offers qualitative and computational advantages over established filter methods in practical situations, where the noise within a process is not simply a Gaussian noise, but rather described by a more complex distribution.
具有变分消息传递推理的跟踪应用的图形随机模型
本文提出了一种基于图形随机模型和变分消息传递推理框架的高适应性状态估计滤波器。我们在跟踪应用的真实和模拟数据上评估了我们的方法。我们的实验结果表明,在实际情况下,所提出的方法比现有的滤波方法具有定性和计算优势,其中过程中的噪声不是简单的高斯噪声,而是由更复杂的分布描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信