Degradation of epoxy lens materials in LED systems

S. Koh, W. V. Driel, Guoqi Zhang
{"title":"Degradation of epoxy lens materials in LED systems","authors":"S. Koh, W. V. Driel, Guoqi Zhang","doi":"10.1109/ESIME.2011.5765850","DOIUrl":null,"url":null,"abstract":"Due to their long lifetime and high efficacy, solid state lighting (SSL) has the potential to revolutionize the illumination industry. The long lifetime claimed by the manufacturers is often based solely on the estimated depreciation of lumen for a single LED operating at 25°C. However, self heating and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of light emitting diode. Furthermore, each SSL system includes different components such as the optical part, electrical driver and interconnections. The failure/degradation of any components wills severely affects the performance and reliability of whole system and hence the weakest component will become the bottleneck for the reliability and lifetime of the module. Literature reviews of the factors influencing the life of LED lamps identified the degradation of the epoxy lens and plastic package due to the junction temperature and voltages as one of the common failure mode. In this research, a methodology to predict the degradation of the epoxy lens has been proposed. In order to correlate the mean time to failure as a function of the junction temperature and the inputted voltage, the simplified Eyring models had been proposed in this research. Since the life of a SSL system is subjected to varying loading condition, another objectives of this research is to present a methodology to predict the life of a SSL under changing condition.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Due to their long lifetime and high efficacy, solid state lighting (SSL) has the potential to revolutionize the illumination industry. The long lifetime claimed by the manufacturers is often based solely on the estimated depreciation of lumen for a single LED operating at 25°C. However, self heating and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of light emitting diode. Furthermore, each SSL system includes different components such as the optical part, electrical driver and interconnections. The failure/degradation of any components wills severely affects the performance and reliability of whole system and hence the weakest component will become the bottleneck for the reliability and lifetime of the module. Literature reviews of the factors influencing the life of LED lamps identified the degradation of the epoxy lens and plastic package due to the junction temperature and voltages as one of the common failure mode. In this research, a methodology to predict the degradation of the epoxy lens has been proposed. In order to correlate the mean time to failure as a function of the junction temperature and the inputted voltage, the simplified Eyring models had been proposed in this research. Since the life of a SSL system is subjected to varying loading condition, another objectives of this research is to present a methodology to predict the life of a SSL under changing condition.
环氧透镜材料在LED系统中的降解
由于其长寿命和高效率,固态照明(SSL)有可能彻底改变照明行业。制造商声称的长寿命通常仅仅基于单个LED在25°C下工作的流明估计折旧。然而,自加热和高环境温度会导致结温升高和电超应力退化,从而缩短发光二极管的寿命。此外,每个SSL系统包括不同的组件,如光学部分、电气驱动器和互连。任何组件的失效/退化都会严重影响整个系统的性能和可靠性,因此最弱的组件将成为模块可靠性和寿命的瓶颈。对影响LED灯具寿命因素的文献综述发现,结温和电压导致的环氧树脂透镜和塑料封装的降解是常见的失效模式之一。本研究提出了一种预测环氧透镜降解的方法。为了将平均失效时间与结温和输入电压的关系联系起来,本文提出了简化的Eyring模型。由于SSL系统的寿命受到不同负载条件的影响,本研究的另一个目标是提出一种在变化条件下预测SSL寿命的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信