Determining the Rules for Computing Fixpoints and Introduction of Min-generated Fuzzy Concepts from a Fuzzy Context

Partha Ghosh
{"title":"Determining the Rules for Computing Fixpoints and Introduction of Min-generated Fuzzy Concepts from a Fuzzy Context","authors":"Partha Ghosh","doi":"10.9734/bpi/ctmcs/v10/4442f","DOIUrl":null,"url":null,"abstract":"In theory of fuzzy concept lattice, generating fuzzy concepts from a given data with fuzzy attributes is one of the fundamental problem. Since fuzzy concepts are the fixpoints of a particular fuzzy operator that is associated with input data, the problem of generating fuzzy concepts turn out to be the problem of computing all fixpoints of this operator. In this article, we have established ten rules for generating fixpoints of two fuzzy closure operators, \\(\\uparrow\\downarrow\\) and \\(\\downarrow\\uparrow\\). Then unifying all the proposed rules, we present a new method and algorithm for computing fixpoints (fuzzy concepts) which are defined as min-generated fuzzy concepts.","PeriodicalId":364769,"journal":{"name":"Current Topics on Mathematics and Computer Science Vol. 10","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics on Mathematics and Computer Science Vol. 10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/ctmcs/v10/4442f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In theory of fuzzy concept lattice, generating fuzzy concepts from a given data with fuzzy attributes is one of the fundamental problem. Since fuzzy concepts are the fixpoints of a particular fuzzy operator that is associated with input data, the problem of generating fuzzy concepts turn out to be the problem of computing all fixpoints of this operator. In this article, we have established ten rules for generating fixpoints of two fuzzy closure operators, \(\uparrow\downarrow\) and \(\downarrow\uparrow\). Then unifying all the proposed rules, we present a new method and algorithm for computing fixpoints (fuzzy concepts) which are defined as min-generated fuzzy concepts.
确定不动点计算规则及模糊环境中最小生成模糊概念的引入
在模糊概念格理论中,从具有模糊属性的给定数据生成模糊概念是一个基本问题。由于模糊概念是与输入数据相关联的特定模糊算子的不动点,因此生成模糊概念的问题就变成了计算该算子的所有不动点的问题。在本文中,我们建立了10条规则,用于生成两个模糊闭包操作符\(\uparrow\downarrow\)和\(\downarrow\uparrow\)的不动点。在此基础上,提出了一种新的计算不动点(模糊概念)的方法和算法,将不动点定义为最小生成模糊概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信