Conceptual and Practical Steps in Event Coreference Analysis of Large-scale Data

EVENTS@ACL Pub Date : 2014-06-01 DOI:10.3115/v1/W14-2906
Fatemeh Torabi Asr, J. Sonntag, Yulia Grishina, Manfred Stede
{"title":"Conceptual and Practical Steps in Event Coreference Analysis of Large-scale Data","authors":"Fatemeh Torabi Asr, J. Sonntag, Yulia Grishina, Manfred Stede","doi":"10.3115/v1/W14-2906","DOIUrl":null,"url":null,"abstract":"A simple conceptual model is employed to investigate events, and break the task of coreference resolution into two steps: semantic class detection and similaritybased matching. With this perspective an algorithm is implemented to cluster event mentions in a large-scale corpus. Results on test data from AQUAINT TimeML, which we annotated manually with coreference links, reveal how semantic conventions vs. information available in the context of event mentions affect decisions in coreference analysis.","PeriodicalId":392223,"journal":{"name":"EVENTS@ACL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVENTS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W14-2906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A simple conceptual model is employed to investigate events, and break the task of coreference resolution into two steps: semantic class detection and similaritybased matching. With this perspective an algorithm is implemented to cluster event mentions in a large-scale corpus. Results on test data from AQUAINT TimeML, which we annotated manually with coreference links, reveal how semantic conventions vs. information available in the context of event mentions affect decisions in coreference analysis.
大规模数据事件相关分析的概念和实践步骤
该方法采用一个简单的概念模型来研究事件,并将共引用解析任务分为语义类检测和基于相似度的匹配两步。从这个角度来看,实现了一种算法来对大规模语料库中的事件提及进行聚类。来自AQUAINT TimeML的测试数据的结果显示,在事件提及的上下文中,语义约定与可用信息是如何影响共同引用分析中的决策的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信