Research on Fault Diagnosis and Prediction of Power Plant Fans

Rongda Jiao, F. Fang
{"title":"Research on Fault Diagnosis and Prediction of Power Plant Fans","authors":"Rongda Jiao, F. Fang","doi":"10.1109/SDPC.2019.00119","DOIUrl":null,"url":null,"abstract":"With the rapid development of artificial intelligence technology, intelligent recognition, diagnostic technology and trend prediction research on power production equipment failure are gradually being carried out. This paper does research into the induced draft fan based on the vibration signal data of the fan. It uses K-Means clustering and least squares support vector machine (LSSVM) to diagnose and trend the collected faults. Next, the trend prediction method for cracking failure of induced draft fan is also studied. Aiming at the large residual error caused by LSSVM regression prediction and actual value, a parameter optimization scheme based on PSO-LSSVM is proposed to improve the prediction accuracy.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of artificial intelligence technology, intelligent recognition, diagnostic technology and trend prediction research on power production equipment failure are gradually being carried out. This paper does research into the induced draft fan based on the vibration signal data of the fan. It uses K-Means clustering and least squares support vector machine (LSSVM) to diagnose and trend the collected faults. Next, the trend prediction method for cracking failure of induced draft fan is also studied. Aiming at the large residual error caused by LSSVM regression prediction and actual value, a parameter optimization scheme based on PSO-LSSVM is proposed to improve the prediction accuracy.
电厂风机故障诊断与预测研究
随着人工智能技术的快速发展,电力生产设备故障的智能识别、诊断技术和趋势预测研究正在逐步展开。本文根据引风机的振动信号数据,对引风机进行了研究。采用k均值聚类和最小二乘支持向量机(LSSVM)对收集到的故障进行诊断和趋势分析。其次,研究了引风机开裂失效的趋势预测方法。针对LSSVM回归预测与实际值残差较大的问题,提出了一种基于PSO-LSSVM的参数优化方案,以提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信