HS-Nets: Estimating Human Body Shape from Silhouettes with Convolutional Neural Networks

E. Dibra, H. Jain, Cengiz Oztireli, R. Ziegler, M. Gross
{"title":"HS-Nets: Estimating Human Body Shape from Silhouettes with Convolutional Neural Networks","authors":"E. Dibra, H. Jain, Cengiz Oztireli, R. Ziegler, M. Gross","doi":"10.1109/3DV.2016.19","DOIUrl":null,"url":null,"abstract":"We represent human body shape estimation from binary silhouettes or shaded images as a regression problem, and describe a novel method to tackle it using CNNs. Utilizing a parametric body model, we train CNNs to learn a global mapping from the input to shape parameters used to reconstruct the shapes of people, in neutral poses, with the application of garment fitting in mind. This results in an accurate, robust and automatic system, orders of magnitude faster than methods we compare to, enabling interactive applications. In addition, we show how to combine silhouettes from two views to improve prediction over a single view. The method is extensively evaluated on thousands of synthetic shapes and real data and compared to state of-art approaches, clearly outperforming methods based on global fitting and strongly competing with more expensive local fitting based ones.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

We represent human body shape estimation from binary silhouettes or shaded images as a regression problem, and describe a novel method to tackle it using CNNs. Utilizing a parametric body model, we train CNNs to learn a global mapping from the input to shape parameters used to reconstruct the shapes of people, in neutral poses, with the application of garment fitting in mind. This results in an accurate, robust and automatic system, orders of magnitude faster than methods we compare to, enabling interactive applications. In addition, we show how to combine silhouettes from two views to improve prediction over a single view. The method is extensively evaluated on thousands of synthetic shapes and real data and compared to state of-art approaches, clearly outperforming methods based on global fitting and strongly competing with more expensive local fitting based ones.
HS-Nets:用卷积神经网络从轮廓估计人体形状
我们将二值轮廓或阴影图像的人体形状估计描述为一个回归问题,并描述了一种使用cnn来解决这一问题的新方法。利用参数化身体模型,我们训练cnn学习从输入到形状参数的全局映射,用于重建中性姿势的人的形状,并考虑到服装试穿的应用。这导致了一个准确、健壮和自动化的系统,比我们比较的方法快了几个数量级,从而实现了交互式应用程序。此外,我们还展示了如何结合来自两个视图的轮廓来改进单个视图的预测。该方法在数千种合成形状和真实数据上进行了广泛的评估,并与最先进的方法进行了比较,明显优于基于全局拟合的方法,并与更昂贵的基于局部拟合的方法进行了激烈竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信