Expecting the Unexpected: The Influence of Elastic Parameter Variance on Bayesian Facies Inversion

C. Sanchis, R. Hauge, H. Kjønsberg
{"title":"Expecting the Unexpected: The Influence of Elastic Parameter Variance on Bayesian Facies Inversion","authors":"C. Sanchis, R. Hauge, H. Kjønsberg","doi":"10.3997/2214-4609.201902178","DOIUrl":null,"url":null,"abstract":"Summary Bayesian inversion is used for the prediction of lithology and fluids from AVO seismic data. We assume a multidimensional Gaussian rock physics prior model for the elastic parameters. In this study, we look at the role of the elastic parameters variance in the prior model and how it can impact facies predictions. When the facies classes contained in the prior model have different variance, this difference influences the inversion beyond just adding uncertainty to the seismic reflections. We examine the balance between the influence of this variance and the match with expected seismic data. Our results show that although the variance influence may lead to unexpected results in synthetic scenarios, it also helps to predict the facies configuration when the seismic data follows the prior distribution and forward model.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Bayesian inversion is used for the prediction of lithology and fluids from AVO seismic data. We assume a multidimensional Gaussian rock physics prior model for the elastic parameters. In this study, we look at the role of the elastic parameters variance in the prior model and how it can impact facies predictions. When the facies classes contained in the prior model have different variance, this difference influences the inversion beyond just adding uncertainty to the seismic reflections. We examine the balance between the influence of this variance and the match with expected seismic data. Our results show that although the variance influence may lead to unexpected results in synthetic scenarios, it also helps to predict the facies configuration when the seismic data follows the prior distribution and forward model.
预测意外:弹性参数方差对贝叶斯相反演的影响
贝叶斯反演用于AVO地震资料的岩性和流体预测。我们假设弹性参数为多维高斯岩石物理先验模型。在这项研究中,我们研究了弹性参数方差在先前模型中的作用,以及它如何影响相预测。当先前模型中包含的相类具有不同的方差时,这种差异不仅会给地震反射增加不确定性,还会影响反演。我们检验了这种方差的影响和与预期地震数据的匹配之间的平衡。研究结果表明,虽然方差影响在综合情景下可能导致意想不到的结果,但在地震资料遵循先验分布和正演模型时,方差影响也有助于预测相构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信