Implementation of STDP Learning for Non-volatile Memory-based Spiking Neural Network using Comparator Metastability

Sang-gyun Gi, Injune Yeo, Byung-geun Lee
{"title":"Implementation of STDP Learning for Non-volatile Memory-based Spiking Neural Network using Comparator Metastability","authors":"Sang-gyun Gi, Injune Yeo, Byung-geun Lee","doi":"10.1109/AICAS.2019.8771602","DOIUrl":null,"url":null,"abstract":"This paper presents a circuit for spike-timing dependent plasticity (STDP) learning of a non-volatile memory (NVM) based spiking neural network (SNN). Unlike conventional hardware for implementation of STDP learning, the proposed circuit does not require additional memory, amplifiers, or an STDP spike generator. Instead, the circuit utilizes the comparison time information of the dynamic comparator to implement a non-linear transfer curve of STDP learning. The circuit includes a dynamic comparator, NVM device, and some digital circuitry to write the conductance of NVM according to the STDP learning rule. Finally, the conductance response model and designed circuit for the STDP learning are used to compare the simulation results of STDP with mathematical STDP. Applications of the proposed circuit are in the design of NVM-based SNN hardware or other bio-inspired hardware systems.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a circuit for spike-timing dependent plasticity (STDP) learning of a non-volatile memory (NVM) based spiking neural network (SNN). Unlike conventional hardware for implementation of STDP learning, the proposed circuit does not require additional memory, amplifiers, or an STDP spike generator. Instead, the circuit utilizes the comparison time information of the dynamic comparator to implement a non-linear transfer curve of STDP learning. The circuit includes a dynamic comparator, NVM device, and some digital circuitry to write the conductance of NVM according to the STDP learning rule. Finally, the conductance response model and designed circuit for the STDP learning are used to compare the simulation results of STDP with mathematical STDP. Applications of the proposed circuit are in the design of NVM-based SNN hardware or other bio-inspired hardware systems.
利用比较器亚稳态实现基于非易失性记忆的脉冲神经网络的STDP学习
提出了一种基于非易失性记忆(NVM)的尖峰神经网络(SNN)的尖峰时序相关可塑性学习电路。与实现STDP学习的传统硬件不同,所提出的电路不需要额外的存储器、放大器或STDP尖峰发生器。相反,电路利用动态比较器的比较时间信息来实现STDP学习的非线性传递曲线。该电路包括一个动态比较器、NVM器件和一些根据STDP学习规则编写NVM电导的数字电路。最后,利用电导响应模型和设计的STDP学习电路,将STDP的仿真结果与数学STDP进行了比较。所提出的电路应用于基于nvm的SNN硬件或其他仿生硬件系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信