{"title":"Adaptive Optimization of the Number of Clusters in Fuzzy Clustering","authors":"J. Beringer, E. Hüllermeier","doi":"10.1109/FUZZY.2007.4295444","DOIUrl":null,"url":null,"abstract":"In this paper, we present a local, adaptive optimization scheme for adjusting the number of clusters in fuzzy C-means clustering. This method is especially motivated by online applications in which a potentially changing clustering structure must be maintained over time, though it turns out to be useful in the static case as well. As part of the method, we propose a new validity measure for fuzzy partitions which is a modification of the commonly used Xie-Beni index and overcomes some deficiencies thereof.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this paper, we present a local, adaptive optimization scheme for adjusting the number of clusters in fuzzy C-means clustering. This method is especially motivated by online applications in which a potentially changing clustering structure must be maintained over time, though it turns out to be useful in the static case as well. As part of the method, we propose a new validity measure for fuzzy partitions which is a modification of the commonly used Xie-Beni index and overcomes some deficiencies thereof.