Bandarage Rajith D. K. Madduma, G. Messier, A. Fapojuwo
{"title":"Impact of Packet Routing Scheme on Post-Failure Industrial Wireless Sensor Networks","authors":"Bandarage Rajith D. K. Madduma, G. Messier, A. Fapojuwo","doi":"10.1109/WCNC45663.2020.9120839","DOIUrl":null,"url":null,"abstract":"In most industrial applications, failed nodes will be repaired, but these repairs take time. For critical system applications, network operators need to understand how their networks function immediately after a failure but before a repair is possible. In this paper, we introduce an extension to the frame-level optimized routing/ scheduling algorithm to improve reliability and energy efficiency and compare it with the other industrial routing algorithms considering the oil refinery wireless sensor networks. We present a structured performance evaluation approach for studying the impact of the routing/scheduling algorithm on the post-failure/pre-repair regime. Simulation results show that the proposed algorithm exerts a positive impact on network performance: highly-reliable, low-latency, energyefficient, and fitting with most industrial applications.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"48 21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In most industrial applications, failed nodes will be repaired, but these repairs take time. For critical system applications, network operators need to understand how their networks function immediately after a failure but before a repair is possible. In this paper, we introduce an extension to the frame-level optimized routing/ scheduling algorithm to improve reliability and energy efficiency and compare it with the other industrial routing algorithms considering the oil refinery wireless sensor networks. We present a structured performance evaluation approach for studying the impact of the routing/scheduling algorithm on the post-failure/pre-repair regime. Simulation results show that the proposed algorithm exerts a positive impact on network performance: highly-reliable, low-latency, energyefficient, and fitting with most industrial applications.