{"title":"Computation of Sound Transmission Loss and Absorption Coefficient of Multi-Layer Systems","authors":"K. Hong, S. Raveendra","doi":"10.1115/imece2001/nca-23516","DOIUrl":null,"url":null,"abstract":"\n Sound transmission and absorption of multi-layer sound absorbents are discussed in this manuscript. A new matrix formulation based on four pole parameters is utilized to derive the transmission loss and absorption coefficient of the absorbents. A transfer matrix relating pressure to acoustic velocity provides the required information to calculate the transmission loss and absorption coefficient. The multi-layer sound absorbents considered are structural panels, elastic porous linings and air-gaps. No limitations are imposed on the number of layers. Some realistic configurations of a multi-layer sound absorbent are studied to demonstrate the applicability of the four-pole parameter technique.","PeriodicalId":387882,"journal":{"name":"Noise Control and Acoustics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/nca-23516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sound transmission and absorption of multi-layer sound absorbents are discussed in this manuscript. A new matrix formulation based on four pole parameters is utilized to derive the transmission loss and absorption coefficient of the absorbents. A transfer matrix relating pressure to acoustic velocity provides the required information to calculate the transmission loss and absorption coefficient. The multi-layer sound absorbents considered are structural panels, elastic porous linings and air-gaps. No limitations are imposed on the number of layers. Some realistic configurations of a multi-layer sound absorbent are studied to demonstrate the applicability of the four-pole parameter technique.