Hrirs' Adaptive Non-Linear Approximation Model Based on Wavelet Transformation

J. Zhang, Zhen-yang Wu
{"title":"Hrirs' Adaptive Non-Linear Approximation Model Based on Wavelet Transformation","authors":"J. Zhang, Zhen-yang Wu","doi":"10.1109/MMSP.2005.248551","DOIUrl":null,"url":null,"abstract":"During the study of spatial hearing, it is requisite to consider how to properly model the acoustical characteristics of HRTFs (head-related transfer functions: HRTFs) or HRIRs (head-related impulse responses: HRIRs) corresponding to certain positions. In our work, we managed to carry through adaptive non-linear approximation in the field of wavelet transformation. The results show that, the HRIRs' adaptive nonlinear approximation model is a more effective data reduction model, faster and averagely 5 dB better than the traditional PCA (Karhunen-Loeve transform) model based on relative error","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During the study of spatial hearing, it is requisite to consider how to properly model the acoustical characteristics of HRTFs (head-related transfer functions: HRTFs) or HRIRs (head-related impulse responses: HRIRs) corresponding to certain positions. In our work, we managed to carry through adaptive non-linear approximation in the field of wavelet transformation. The results show that, the HRIRs' adaptive nonlinear approximation model is a more effective data reduction model, faster and averagely 5 dB better than the traditional PCA (Karhunen-Loeve transform) model based on relative error
Hrirs基于小波变换的自适应非线性逼近模型
在空间听力的研究中,需要考虑如何正确建模特定位置对应的hrtf (head-related transfer function, hrtf)或HRIRs (head-related impulse responses, HRIRs)的声学特性。在我们的工作中,我们成功地在小波变换领域进行了自适应非线性逼近。结果表明,HRIRs自适应非线性近似模型是一种更有效的数据约简模型,比基于相对误差的传统PCA (Karhunen-Loeve transform)模型速度更快,平均提高5 dB
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信