INVESTIGATION OF THE INFLUENCE OF SPECIMEN MANUFACTURING PARAMETERS BY THE SELECTIVE LASER MELTING (SLP) METHOD AND COMPARATIVE STUDIES OF THE MECHANICAL PROPERTIES OF ALUMINUM ALLOY AlSi10Mg

S. Adjamskiy, G. Kononenko, R. Podolskyi
{"title":"INVESTIGATION OF THE INFLUENCE OF SPECIMEN MANUFACTURING PARAMETERS BY THE SELECTIVE LASER MELTING (SLP) METHOD AND COMPARATIVE STUDIES OF THE MECHANICAL PROPERTIES OF ALUMINUM ALLOY AlSi10Mg","authors":"S. Adjamskiy, G. Kononenko, R. Podolskyi","doi":"10.15588/1607-6885-2022-2-7","DOIUrl":null,"url":null,"abstract":"Purpose. To work out the modes of manufacturing samples from aluminum alloy AlSi10Mg with a layer thickness of 40 microns using SLP technology, studying their mechanical properties, and comparing them with the traditional method of production. \nResearch methods. To determine the structural state of  alloys, optical microscopy was used, granulometric analysis was performed using a scanning electron microscope, mechanical properties were determined according to the standard method using a tearing machine; porosity was determined based on the results of microstructural analysis as a percentage of the area occupied by pores. \nResults. It was established that when the scanning speed is increased to 1200 mm/s, the distance between the tracks plays a significant role in obtaining high density. From the analysis of mechanical properties, it was established that the samples made by SLP technology have a higher value of tensile strength by 28%, and smaller plastic characteristics (relative elongation and relative reduction) by 17.4% and 31.7%, respectively, compared to the traditional production method. \nScientific novelty.  The dependence of the change in the density of the experimental samples made by the SLP technology with AlSi10Mg on the manufacturing parameters is shown. It was established that at a scanning speed of 1000...1100 mm/s, the pore size is on average from 2...7 μm and for samples made at a scanning speed of 1200 mm/s - from 1 to 5 μm. \nPractical value.  Application of the obtained results will lead to the manufactured parts with increased strength characteristics.","PeriodicalId":423067,"journal":{"name":"Innovative Materials and Technologies in Metallurgy and Mechanical Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Materials and Technologies in Metallurgy and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15588/1607-6885-2022-2-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose. To work out the modes of manufacturing samples from aluminum alloy AlSi10Mg with a layer thickness of 40 microns using SLP technology, studying their mechanical properties, and comparing them with the traditional method of production. Research methods. To determine the structural state of  alloys, optical microscopy was used, granulometric analysis was performed using a scanning electron microscope, mechanical properties were determined according to the standard method using a tearing machine; porosity was determined based on the results of microstructural analysis as a percentage of the area occupied by pores. Results. It was established that when the scanning speed is increased to 1200 mm/s, the distance between the tracks plays a significant role in obtaining high density. From the analysis of mechanical properties, it was established that the samples made by SLP technology have a higher value of tensile strength by 28%, and smaller plastic characteristics (relative elongation and relative reduction) by 17.4% and 31.7%, respectively, compared to the traditional production method. Scientific novelty.  The dependence of the change in the density of the experimental samples made by the SLP technology with AlSi10Mg on the manufacturing parameters is shown. It was established that at a scanning speed of 1000...1100 mm/s, the pore size is on average from 2...7 μm and for samples made at a scanning speed of 1200 mm/s - from 1 to 5 μm. Practical value.  Application of the obtained results will lead to the manufactured parts with increased strength characteristics.
摘要研究了选择性激光熔化法制备试样参数的影响及AlSi10Mg铝合金力学性能的对比研究
目的。研究用SLP技术制备层厚为40微米AlSi10Mg铝合金样品的方法,研究其力学性能,并与传统的生产方法进行比较。研究方法。采用光学显微镜测定合金的组织状态,用扫描电镜进行粒度分析,用撕裂机按标准方法测定力学性能;孔隙度是根据微观结构分析的结果确定的,作为孔隙占用面积的百分比。结果。结果表明,当扫描速度增加到1200mm /s时,磁道间距对获得高密度有重要影响。从力学性能分析可知,与传统生产方法相比,采用SLP工艺制备的试样抗拉强度提高28%,塑性特性(相对伸长率和相对收缩率)分别降低17.4%和31.7%。科学的新奇。给出了AlSi10Mg SLP工艺制备的实验样品密度变化与工艺参数的关系。当扫描速度为1000…1100mm /s时,孔径平均为2…对于扫描速度为1200mm /s的样品- 1 ~ 5 μm。实用价值。应用所获得的结果将导致制造的零件具有更高的强度特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信