Comparative Analysis of Six Short-Term Load Forecasting Models for a Distribution Transformer

Mukesh Kumar, Praveer Kumar Jha, J. Crawford Alasdair, Shalini Dandriyal, Rahul Maurya
{"title":"Comparative Analysis of Six Short-Term Load Forecasting Models for a Distribution Transformer","authors":"Mukesh Kumar, Praveer Kumar Jha, J. Crawford Alasdair, Shalini Dandriyal, Rahul Maurya","doi":"10.1109/REDEC58286.2023.10208192","DOIUrl":null,"url":null,"abstract":"The paper presents the short-term (day-ahead) time-series load forecasting models based on the ARIMA, SVR, MLR, ML/ANN i.e. NARX, ANFIS, and Exponentially Weighted Elasticnet with Fourier Series (EWENFS) at 990 kVA Distribution Transformer (DT) level. The proposed load forecasting models significantly improve the forecasting errors for DT level day-ahead forecasting for each season. The models show that ARIMA and EWENFS models yield better predictions as compared to other models. However, the reasons behind the high error of ANN needs to be examined to improve our learning. For summer, monsoon & winter seasons minimum MAE obtained are 10.27 kVA, 6.97 kVA, and 7.19 kVA respectively.","PeriodicalId":137094,"journal":{"name":"2023 6th International Conference on Renewable Energy for Developing Countries (REDEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Renewable Energy for Developing Countries (REDEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDEC58286.2023.10208192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the short-term (day-ahead) time-series load forecasting models based on the ARIMA, SVR, MLR, ML/ANN i.e. NARX, ANFIS, and Exponentially Weighted Elasticnet with Fourier Series (EWENFS) at 990 kVA Distribution Transformer (DT) level. The proposed load forecasting models significantly improve the forecasting errors for DT level day-ahead forecasting for each season. The models show that ARIMA and EWENFS models yield better predictions as compared to other models. However, the reasons behind the high error of ANN needs to be examined to improve our learning. For summer, monsoon & winter seasons minimum MAE obtained are 10.27 kVA, 6.97 kVA, and 7.19 kVA respectively.
6种配电变压器短期负荷预测模型的比较分析
本文提出了基于ARIMA、SVR、MLR、ML/ANN即NARX、ANFIS和指数加权弹性网(EWENFS)的990kva配电变压器(DT)级短期(日前)时间序列负荷预测模型。提出的负荷预测模型显著改善了各季节DT水平日前预测的预测误差。这些模型表明,与其他模型相比,ARIMA和EWENFS模型的预测效果更好。然而,人工神经网络的高误差背后的原因,需要检查,以提高我们的学习。夏季、季风和冬季的最小MAE分别为10.27 kVA、6.97 kVA和7.19 kVA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信