Shubhani Aggarwal, Rajat Chaudhary, G. Aujla, Anish Jindal, Amit Dua, Neeraj Kumar
{"title":"EnergyChain","authors":"Shubhani Aggarwal, Rajat Chaudhary, G. Aujla, Anish Jindal, Amit Dua, Neeraj Kumar","doi":"10.1145/3214701.3214704","DOIUrl":null,"url":null,"abstract":"The amalgamation of information and communication technologies in power industry has led to a revolution known as smart grid (SG). The energy consumers interact with the power utility using a bidirectional communication channel for energy trading in SG ecosystem. However, the traditional energy trading mechanisms strongly rely on trusted third parties which act as a single point of failure. Therefore, it is important to equip SG with a decentralized and secure energy trading system which can execute contracts and handle negotiations among various trading parties. Hence, in this paper, EnergyChain, a blockchain model for storing and accessing the data generated by smart homes in a secure manner is proposed. EnergyChain works in following phases: 1) a miner node is selected on the basis of power capacity of various smart homes, 2) a block creation and validation scheme is presented, and 3) a transaction handling mechanism is designed for secure energy trading. After evaluation, the superiority of EnergyChain is validated. The results obtained show that EnergyChain outperforms the traditional scheme in terms of communication costs and computation time.","PeriodicalId":129580,"journal":{"name":"Proceedings of the 1st ACM MobiHoc Workshop on Networking and Cybersecurity for Smart Cities","volume":"121 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM MobiHoc Workshop on Networking and Cybersecurity for Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3214701.3214704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The amalgamation of information and communication technologies in power industry has led to a revolution known as smart grid (SG). The energy consumers interact with the power utility using a bidirectional communication channel for energy trading in SG ecosystem. However, the traditional energy trading mechanisms strongly rely on trusted third parties which act as a single point of failure. Therefore, it is important to equip SG with a decentralized and secure energy trading system which can execute contracts and handle negotiations among various trading parties. Hence, in this paper, EnergyChain, a blockchain model for storing and accessing the data generated by smart homes in a secure manner is proposed. EnergyChain works in following phases: 1) a miner node is selected on the basis of power capacity of various smart homes, 2) a block creation and validation scheme is presented, and 3) a transaction handling mechanism is designed for secure energy trading. After evaluation, the superiority of EnergyChain is validated. The results obtained show that EnergyChain outperforms the traditional scheme in terms of communication costs and computation time.