Automatic software interference detection in parallel applications

V. Tabatabaee, J. Hollingsworth
{"title":"Automatic software interference detection in parallel applications","authors":"V. Tabatabaee, J. Hollingsworth","doi":"10.1145/1362622.1362642","DOIUrl":null,"url":null,"abstract":"We present an automated software interference detection methodology for Single Program, Multiple Data (SPMD) parallel applications. Interference comes from the system and unexpected processes. If not detected and corrected such interference may result in performance degradation. Our goal is to provide a reliable metric for software interference that can be used in soft-failure protection and recovery systems. A unique feature of our algorithm is that we measure the relative timing of application events (i.e. time between MPI calls) rather than system level events such as CPU utilization. This approach lets our system automatically accommodate natural variations in an application's utilization of resources. We use performance irregularities and degradation as signs of software interference. However, instead of relying on temporal changes in performance, our system detects spatial performance degradation across multiple processors. We also include a case study that demonstrates our technique's effectiveness, resilience and robustness.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"41 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present an automated software interference detection methodology for Single Program, Multiple Data (SPMD) parallel applications. Interference comes from the system and unexpected processes. If not detected and corrected such interference may result in performance degradation. Our goal is to provide a reliable metric for software interference that can be used in soft-failure protection and recovery systems. A unique feature of our algorithm is that we measure the relative timing of application events (i.e. time between MPI calls) rather than system level events such as CPU utilization. This approach lets our system automatically accommodate natural variations in an application's utilization of resources. We use performance irregularities and degradation as signs of software interference. However, instead of relying on temporal changes in performance, our system detects spatial performance degradation across multiple processors. We also include a case study that demonstrates our technique's effectiveness, resilience and robustness.
并行应用中的自动软件干扰检测
我们提出了一种用于单程序多数据(SPMD)并行应用的自动软件干扰检测方法。干扰来自系统和意外过程。如果不加以检测和纠正,这种干扰可能导致性能下降。我们的目标是为软件干扰提供一个可靠的度量,可用于软故障保护和恢复系统。我们算法的一个独特之处在于,我们测量应用程序事件的相对定时(即MPI调用之间的时间),而不是系统级事件(如CPU利用率)。这种方法使我们的系统能够自动适应应用程序对资源利用的自然变化。我们使用性能不规则和退化作为软件干扰的标志。然而,我们的系统不是依赖于性能的时间变化,而是检测跨多个处理器的空间性能下降。我们还包括一个案例研究,证明我们的技术的有效性,弹性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信